自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 图像分类,半监督学习

本文在图像分类实战中简单介绍半监督学习的应用。plt_train_loss = [] #训练中模型的lossplt_val_loss = [] #验证中模型的lossplt_train_acc = [] #训练中模型的准确率plt_val_acc = [] #验证中模型验证的准确率max_acc = 0.0 #当前最大准确率train_acc = 0.0 #训练集准确率val_acc = 0.0 #验证集准确率semi_loss = 0.0 #半监督学习中出现的损失。

2025-01-11 14:20:23 559

原创 基于深度学习的人数预测

本文仅为个人学习中的体会,非专业人士ori_data = list(csv.reader(f))#打开并读取csv文件,并将内容存储在ori_data中column = ori_data[0]#column中存储csv文件的第一行csv_data = np.array(ori_data[1:])[:,1:].astype(float)#把ori_data转化为矩阵,去除第一行和第一列的数据,把数据转换为浮点数,存储在csv_data中。

2025-01-06 14:57:15 326

原创 深度学习线性回归

总结,在线性回归中,大致可以分为三步,第一,定义一个模型;第二,定义合适的损失函数;第三,根据损失对模型进行优化。可以看到训练后的数据和真实值非常接近,也绘制出了数据集中的线性关系。然后将生成数据集的第四个特征即X[:,3]和目标值Y绘制成散点图。最后还要根据损失对模型进行优化,为此需要定义一个梯度下降优化器。万事俱备,我们最后只需要提供初始的w和b,便可对数据进行训练。接下来需要定义一个函数(模型),一个合适的损失函数。首先需要数据,先定义一个创建数据的函数。然后需要一个定义随机取数据的函数。

2025-01-03 10:42:17 154

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除