【动态规划】最大上升子序列和

题解:最大上升子序列和

题目传送门

AcWing 1016. 最大上升子序列和

一、题目重述

给定一个长度为 N 的序列 (a₁, a₂, …, aₙ),我们需要找出所有可能的上升子序列中,和最大的那个子序列的和。上升子序列定义为:对于子序列 (b₁, b₂, …, bₛ),满足 b₁ < b₂ < … < bₛ 且在原序列中的位置顺序不变。

二、题目分析

这个问题与经典的最长上升子序列(LIS)问题类似,但目标不是求最长长度,而是求最大和。需要注意:

  1. 最长上升子序列的和不一定最大
  2. 最大和上升子序列不一定最长

三、算法分析

采用动态规划解决:

  • 定义 f[i] 表示以 a[i] 结尾的最大上升子序列和
  • 对于每个 i,检查前面所有比 a[i] 小的元素 a[j],将 a[i] 接到以 a[j] 结尾的最大和子序列后

四、动态规划思路

a. 状态表示

f[i]:以第 i 个元素结尾的最大上升子序列的和

b. 初始化

每个 f[i] 初始化为 a[i](至少包含自己)

c. 状态转移

对于每个 i 从 1 到 n,对于每个 j 从 1 到 i-1
如果 a[i] > a[j],则 f[i] = max(f[i], f[j] + a[i])

d. 最终结果

所有 f[i] 中的最大值

五、代码实现

#include <bits/stdc++.h>
using namespace std;
// #define int long long
const int N = 1010;
int n;
int a[N];
int f[N];

void solve()
{
    cin >> n;
    for (int i = 1; i <= n; i ++)
        cin >> a[i];
    int ans = 0;
    for (int i = 1; i <= n; i ++)
    {
        f[i] = a[i]; // 初始化为a[i]本身
        for (int j = 1; j < i; j ++)
        {
            if (a[i] > a[j]) // 满足上升条件
            {
                f[i] = max(f[i], f[j] + a[i]); // 更新最大和
            }
        }
        ans = max(ans, f[i]); // 维护全局最大值
    }
    cout << ans << "\n";
}

signed main()
{
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    solve();
    return 0;
}

六、重点细节

  1. 初始化:每个 f[i] 初始化为 a[i],因为至少可以单独作为一个子序列
  2. 双重循环:外层循环遍历每个元素,内层循环检查前面所有可能接上的元素
  3. 条件判断:只有当 a[i] > a[j] 时才考虑接上
  4. 结果收集:需要在每次更新 f[i] 后检查是否是新的最大值

七、复杂度分析

  • 时间复杂度:O(n²),因为有两层嵌套循环
  • 空间复杂度:O(n),只需要一个长度为n的数组存储状态

八、总结

本题通过动态规划高效地解决了最大上升子序列和问题,与最长上升子序列问题的区别在于状态表示的含义和转移时的操作。理解这种差异对于掌握动态规划的灵活应用非常重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hongjianMa

感恩社区,回馈社区

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值