题解:最大上升子序列和
题目传送门
一、题目重述
给定一个长度为 N 的序列 (a₁, a₂, …, aₙ),我们需要找出所有可能的上升子序列中,和最大的那个子序列的和。上升子序列定义为:对于子序列 (b₁, b₂, …, bₛ),满足 b₁ < b₂ < … < bₛ 且在原序列中的位置顺序不变。
二、题目分析
这个问题与经典的最长上升子序列(LIS)问题类似,但目标不是求最长长度,而是求最大和。需要注意:
- 最长上升子序列的和不一定最大
- 最大和上升子序列不一定最长
三、算法分析
采用动态规划解决:
- 定义 f[i] 表示以 a[i] 结尾的最大上升子序列和
- 对于每个 i,检查前面所有比 a[i] 小的元素 a[j],将 a[i] 接到以 a[j] 结尾的最大和子序列后
四、动态规划思路
a. 状态表示
f[i]:以第 i 个元素结尾的最大上升子序列的和
b. 初始化
每个 f[i] 初始化为 a[i](至少包含自己)
c. 状态转移
对于每个 i 从 1 到 n,对于每个 j 从 1 到 i-1:
如果 a[i] > a[j],则 f[i] = max(f[i], f[j] + a[i])
d. 最终结果
所有 f[i] 中的最大值
五、代码实现
#include <bits/stdc++.h>
using namespace std;
// #define int long long
const int N = 1010;
int n;
int a[N];
int f[N];
void solve()
{
cin >> n;
for (int i = 1; i <= n; i ++)
cin >> a[i];
int ans = 0;
for (int i = 1; i <= n; i ++)
{
f[i] = a[i]; // 初始化为a[i]本身
for (int j = 1; j < i; j ++)
{
if (a[i] > a[j]) // 满足上升条件
{
f[i] = max(f[i], f[j] + a[i]); // 更新最大和
}
}
ans = max(ans, f[i]); // 维护全局最大值
}
cout << ans << "\n";
}
signed main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
solve();
return 0;
}
六、重点细节
- 初始化:每个 f[i] 初始化为 a[i],因为至少可以单独作为一个子序列
- 双重循环:外层循环遍历每个元素,内层循环检查前面所有可能接上的元素
- 条件判断:只有当 a[i] > a[j] 时才考虑接上
- 结果收集:需要在每次更新 f[i] 后检查是否是新的最大值
七、复杂度分析
- 时间复杂度:O(n²),因为有两层嵌套循环
- 空间复杂度:O(n),只需要一个长度为n的数组存储状态
八、总结
本题通过动态规划高效地解决了最大上升子序列和问题,与最长上升子序列问题的区别在于状态表示的含义和转移时的操作。理解这种差异对于掌握动态规划的灵活应用非常重要。