hadoop
Hadoop 中常问的就三块,第一:分布式存储(HDFS);第二:分布式计算框架(MapReduce);第三:资源调度框架(YARN)。
一,什么是Hadoop及其组件
Hadoop是一个开源分布式计算平台架构,基于apache(阿帕奇)协议发布,由java语言开发。主要包括
运行模式:单机版、伪分布式模式、完全分布式模式
1.HDFS(分布式文件管理系统)
1)HDFS的主要特点:
主要解决大数据处理问题,起源与谷歌的GFS
保存多个副本,且提供容错机制,副本丢失或宕机自动恢复。默认存3份。
运行在廉价的机器上。
适合大数据的处理。HDFS默认会将文件分割成block(块),64M为1个block。然后将block按键值对存储在HDFS上,并将键值对的映射存到内存中。如果小文件太多,那内存的负担会很重。
HDFS中的两个重要角色:
①[Namenode]
1)管理文件系统的命名空间。
2)记录 每个文件数据快在各个Datanode上的位置和副本信息。
3)协调客户端对文件的访问。
4)记录命名空间内的改动或者空间本身属性的改动。
5)Namenode 使用事务日志记录HDFS元数据的变化。使用映像文件存储文件系统的命名空间,包括文件映射,文件属性等。
从社会学来看,Namenode是HDFS里面的管理者,发挥者管理、协调、操控的作用。
②[Datanode]
1)负责所在物理节点的存储管理。
2)一次写入,多次读取(不修改)。
3)文件由数据库组成,一般情况下,数据块的大小为64MB。
4)数据尽量散步到各个节点。
从社会学的角度来看,Datanode是HDFS的工作者,发挥按着Namenode的命令干活,并且把干活的进展和问题反馈到Namenode的作用。
2)客户端如何访问HDFS中一个文件呢?具体流程如下:
1.首先从Namenode获得组成这个文件的数据块位置列表。
2.接下来根据位置列表知道存储数据块的Datanode。
3.最后访问Datanode获取数据。
注意:Namenode并不参与数据实际传输。
3)数据存储系统,数据存储的可靠性至关重要。HDFS是如何保证其可靠性呢?它主要采用如下机理:
1.冗余副本策略,即所有数据都有副本,副本的数目可以在hdfs-site.xml中设置相应的复制因子。
2.机架策略,即HDFS的“机架感知”,一般在本机架存放一个副本,在其它机架再存放别的副本,这样可以防止机架失效时丢失数据,也可以提供带宽利用率。
3.心跳机制,即Namenode周期性从Datanode接受心跳信号和快报告,没有按时发送心跳的Datanode会被标记为宕机,不会再给任何I/O请求,若是Datanode失效造成副本数量下降,并且低于预先设置的阈值,Namenode会检测出这些数据块,并在合适的时机进行重新复制。
4.安全模式,Namenode启动时会先经过一个“安全模式”阶段。
5.校验和,客户端获取数据通过检查校验和,发现数据块是否损坏,从而确定是否要读取副本。
6.回收站,删除文件,会先到回收站/trash,其里面文件可以快速回复。
7.元数据保护,映像文件和事务日志是Namenode的核心数据,可以配置为拥有多个副本。
8.快照,支持存储某个时间点的映像,需要时可以使数据重返这个时间点的状态。
4)HDFS也是按照Master和Slave的结构。
分为NameNode、SecondaryNameNode、DataNode这几个角色。
NameNode:是Master节点,是大领导。管理数据块映射;处理客户端的读写请求;配置副本策略;管理HDFS的名称空间;
SecondaryNameNode:是一个小弟,分担大哥namenode的工作量;是NameNode的冷备份;合并fsimage和fsedits然后再发给namenode。
DataNode:Slave节点,奴隶,干活的。负责存储client发来的数据块block;执行数据块的读写操作。
热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。
冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。
fsimage:元数据镜像文件(文件系统的目录树。)
edits:元数据的操作日志(针对文件系统做的修改操作记录)
namenode内存中存储的是=fsimage+edits。
SecondaryNameNode负责定时默认1小时,从namenode上,获取fsimage和edits来进行合并,然后再发送给namenode。减少namenode的工作量。
5)HDFS的优缺点:
优点:a、高容错性
1)数据自动保存多个副本。通过增加副本的形式,提高容错性
2)某一个副本丢失以后,它可以自动恢复
b、适合处理大数据
1)数据规模:能够处理数据规模达到GB、TB,甚至PB级别的数据
2)文件规模:能够处理百万规模以上的文件数量,数量相当之大
c、可构建在廉价机器上、通过多副本机制,提高可靠性。
缺点:a、不适合低延时数据访问,比如毫秒级的存储数据,是做不到的
b、无法高校的对大量小文件进行存储
1)存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息,是不可取的,因为NameNode的内存总是有限的。
2)小文件存储的寻址时间会超过读取时间(小文件量大,导致遍历的时间就长),违反了HDFS的设计目标。
c、不支持并发写入,文件随机修改。