
计算机视觉opencv
文章平均质量分 91
星期天要睡觉
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
计算机视觉(opencv)实战一——图像本质、数字矩阵、RGB + 图片基本操作(灰度、裁剪、替换等)
光学三原色RGB):红、绿、蓝通过将红色(R)、绿色(G)、蓝色(B)三种颜色以不同强度组合,形成各种颜色。RGB颜色25500红色02550绿色00255蓝色255255255白色000黑色2552550黄色百度搜索 “RGB调色板” ,我们通过调色来具体对比来看看:将第一个像素对应的R、G、B输入调色板后得到的颜色 与 像素切片篇左上角的像素颜色 相同:注意:这里的三个数组并不是直接 print(image) 打印出来的结果。原创 2025-08-07 22:51:48 · 1649 阅读 · 0 评论 -
计算机视觉(opencv)实战二——图像边界扩展cv2.copyMakeBorder()
在图像处理和计算机视觉中,有时需要在原始图像的四周增加边界(Padding)。cv2.copyMakeBorder()是OpenCV库中的一个函数,用于给图像添加额外的边界(padding)。掌握它之后,你不仅能做图像边界填充,还能理解很多计算机视觉算法在“边缘处理”时的逻辑。OpenCV 提供了多种扩展方式,不同方式在边缘处理时会有不同效果。是一个简单而强大的函数,可以在图像四周添加不同类型的边界。也是镜像反射,但不复制边界像素本身。镜像反射边界,边界像素会被复制。边界使用图像另一侧的像素包裹。原创 2025-08-14 20:10:42 · 1200 阅读 · 0 评论 -
计算机视觉(opencv)实战三——图像运算、cv2.add()、cv2.addWeighted()
在数字图像处理中,是基础且常用的操作之一。它能够对两幅图像或图像与常数进行加减乘除,从而实现亮度调整、融合叠加、特效制作等功能。本文将重点介绍中的图像加法运算与加权运算,包括它们的底层规则与区别。原创 2025-08-14 20:58:07 · 1091 阅读 · 0 评论 -
计算机视觉(opencv)实战四——图片阈值处理cv2.threshold()
阈值处理的作用,其实就是,让我们更容易分析和处理有用的部分。原创 2025-08-15 09:14:34 · 1173 阅读 · 0 评论 -
计算机视觉(opencv)实战五——图像平滑处理(均值滤波、方框滤波、高斯滤波、中值滤波)附加:视频逐帧平滑处理
h, w = image.shape[:2] # 获取图片的高和宽for i in range(n): # 生成n个椒盐噪声result[x, y] = 0 # 黑色噪声(椒)else:result[x, y] = 255 # 白色噪声(盐):复制原图,避免修改原图。:获取图像高度和宽度,用于随机生成噪声位置。循环n随机生成行坐标随机生成列坐标随机选择 0(黑)或 255(白)作为噪声值作用:生成带有椒盐噪声的图像,用于测试滤波器的去噪能力。均值滤波 / 方框滤波。原创 2025-08-15 21:52:05 · 986 阅读 · 0 评论