
AI前沿
文章平均质量分 96
Zoro|
永远相信美好的事情即将发生
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
UMI-机器人采集数据的通用框架
摘要: 斯坦福大学提出的UMI(Universal Manipulation Interface)是一种低成本、高效的机器人数据采集框架,通过手持夹持器设计结合视觉-惯性SLAM系统,解决了传统遥操作和视频学习在动态任务中的局限性。UMI采用鱼眼镜头、侧面镜和IMU传感器实现多模态感知,并通过延迟匹配机制(包括相机、执行器、通信延迟的精确估计与补偿)提升策略迁移的稳定性。实验表明,UMI能高效采集复杂操作数据,支持双臂协调等长时序任务,为机器人学习提供了可扩展的通用解决方案。原创 2025-08-18 00:18:46 · 824 阅读 · 0 评论 -
从噪声到动作:Diffusion Policy 如何改变机器人学习?
摘要: Diffusion Policy提出了一种基于条件扩散模型的机器人动作生成方法,通过逐步去噪生成连贯的高维动作序列,解决了传统方法在多模态分布、动作时序一致性和训练稳定性上的瓶颈。该框架利用视觉观测作为条件输入,结合Transformer时序建模,在复杂任务中显著优于现有方法。实验表明,Diffusion Policy能高效学习多样化策略,并稳定生成长程动作序列,为机器人控制提供了新的技术路径。 关键词: Diffusion Policy、机器人学习、多模态动作生成、条件扩散模型、时序一致性原创 2025-08-16 18:37:47 · 859 阅读 · 0 评论 -
DeepSeek本机部署(基于Ollama和Docker管理)
基于Docker和Ollama管理的本地最强模型部署原创 2025-01-31 11:41:47 · 23647 阅读 · 13 评论