
深度学习
文章平均质量分 92
机器学习司猫白
记录学习里程,记录学习笔记,欢迎大家一起交流
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《梯度消失和梯度爆炸:神经网络的“学习脾气”大揭秘》
在传统机器学习和神经网络的世界里,梯度消失(Gradient Vanishing)和梯度爆炸(Gradient Explosion)是两个让人头疼的“老大难”问题。它们听起来高大上,像是什么复杂的数学怪兽,但其实用大白话就能讲明白。想象你在教一个机器人学生读书,这家伙要么懒得动(梯度消失),要么一激动跑过头(梯度爆炸),结果就是学不好东西。今天,我就用最通俗的方式,带你彻底搞懂这两个问题是怎么回事,为什么会发生,以及科学家们是怎么“驯服”它们的。准备好了吗?咱们开始吧!要弄懂梯度消失和梯度爆炸,咱们得先搞清原创 2025-03-17 10:04:41 · 1278 阅读 · 8 评论 -
从 YOLOv1 到 YOLOv2:目标检测的进化之路
你有没有想过,当你用手机拍一张照片,里面的人、车、狗是怎么被自动识别出来的?这背后靠的就是。目标检测是计算机视觉中的一个重要领域,它不仅要回答“图片里有什么”,还要告诉你“这些东西在哪里”。和。它们的名字听起来很酷——“You Only Look Once”(你只看一次),不仅名字帅,性能也很强。这篇博客将带你走进 YOLO 的世界,聊聊它们的原理、区别,以及那些听起来高大上的概念,比如 mAP、FPS、IoU 等。我们会尽量用大白话解释,并在后面深入讲解数学公式和代码实现,让你轻松看懂!原创 2025-03-14 14:10:42 · 1262 阅读 · 2 评论 -
《Transformer如何进行图像分类:从新手到入门》
这篇博客将带你从零开始,了解Transformer的基本概念、它如何被应用到图像分类,以及通过一个简单的例子让你直观理解它的运作原理。假设我们要训练一个模型,区分CIFAR-10数据集中的“猫”和“狗”图片(CIFAR-10是PyTorch内置的一个小型图像数据集,包含10类32x32像素的图像)。让我们看看它是如何工作的。在最后一层,ViT取一个特殊的“分类标记”(CLS Token),通过全连接层输出10个类别的概率(CIFAR-10有10类),比如“猫”的概率是0.8,“狗”是0.1。原创 2025-03-13 17:43:18 · 1587 阅读 · 27 评论 -
《高效迁移学习:Keras与EfficientNet花卉分类项目全解析》
想象一下:如果一个已经会弹钢琴的人学习吉他,会比完全不懂音乐的人快得多。因为TA已经掌握了乐理知识、节奏感和手指灵活性,这些都可以迁移到新乐器的学习中。这正是迁移学习(Transfer Learning)的核心思想——将已掌握的知识迁移到新任务中。原创 2025-03-12 00:00:00 · 742 阅读 · 0 评论 -
【使用VGG进行迁移学习:超参数调节与优化技巧】
迁移学习(Transfer Learning)作为深度学习中的一种重要技术,已经广泛应用于各种视觉任务,如图像分类、目标检测等。通过利用在大规模数据集(如ImageNet)上训练的预训练模型,迁移学习能够显著提高模型在小数据集上的表现。VGG(Visual Geometry Group)是一个经典的卷积神经网络架构,广泛用于迁移学习。本文将详细介绍如何使用VGG进行迁移学习,并通过超参数调节提高模型的性能。原创 2025-03-11 15:06:07 · 829 阅读 · 0 评论 -
【 深入解析VGG网络:理论、调优与ResNet对比】
参数典型值作用解析学习率0.001~0.01控制权重更新步长,过大易震荡,过小收敛慢。RMSProp/Adam可自适应调整。批量大小32~256影响梯度估计的稳定性,小批量增加随机性但需要更多内存。优化器Momentum(β=0.9)加速收敛,Adam结合动量与自适应学习率,适合非凸优化。权重初始化He正态分布针对ReLU激活,初始化权重方差为 (2/n_{\text{in}}),缓解梯度消失/爆炸。正则化惩罚大权重,防止过拟合。Dropout(rate=0.5)随机屏蔽神经元,增强泛化能力。原创 2025-03-10 17:46:27 · 1354 阅读 · 1 评论 -
深入解析EfficientNet:高效深度学习网络与ResNet的对比(使用TensorFlow进行代码复现,并使用cifar10数据集进行实战)
EfficientNet是一种由Google在2019年提出的深度神经网络架构,其目标是通过优化神经网络模型的深度、宽度和分辨率来实现计算效率和准确度的平衡。它的核心理念是:通过复合缩放(Compound Scaling)方法同时优化网络的深度、宽度和输入图像的分辨率,使得网络在给定计算预算下能够达到更高的性能。原创 2025-03-05 00:00:00 · 2293 阅读 · 18 评论 -
【Keras图像处理入门:图像加载与预处理全解析】
本文将全面讲解如何使用Keras进行图像加载、预处理和数据增强,为深度学习模型准备高质量的图像数据。原创 2025-02-27 10:36:15 · 1829 阅读 · 28 评论 -
【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
ResNet(Residual Networks)是由微软研究院的何凯明等人于2015年提出的神经网络架构。在深度神经网络中,随着层数的增加,网络的表现反而开始退化,这种现象被称为“退化问题”。为了缓解这个问题,ResNet引入了“残差块”(Residual Block)的概念。通过在网络中加入跳跃连接(skip connections),ResNet使得信息可以绕过一些层,直接传递到更深层,从而避免了梯度消失和梯度爆炸的问题。在传统的神经网络中,每一层的输出是当前输入的变换。原创 2025-02-12 17:30:46 · 1857 阅读 · 0 评论 -
【深度学习入门实战】基于TensorFlow的手写数字识别实战(附完整可视化分析)
本案例使用经典的MNIST手写数字数据集,通过Keras构建全连接神经网络,实现0-9数字的分类识别。原创 2025-02-11 10:06:32 · 1191 阅读 · 0 评论 -
【深度学习实战】kaggle 自动驾驶的假场景分类
判断自动驾驶场景是真是假,训练神经网络或使用任何算法来分类驾驶场景的图像是真实的还是虚假的。图像采用 RGB 格式并以 JPEG 格式压缩。标签显示 (1) 真实和 (0) 虚假二元分类VGG16 是由牛津大学视觉几何组(VGG)在2014年提出的卷积神经网络(CNN)。它由16个层组成,其中包含13个卷积层和3个全连接层。其特点是使用3x3的小卷积核和2x2的最大池化层,网络深度较深,有效提取图像特征。VGG16在图像分类任务中表现优异,尤其是在ImageNet挑战中取得了良好成绩。原创 2025-01-15 16:17:58 · 1534 阅读 · 17 评论 -
【深度学习实战:kaggle自然场景的图像分类-----使用TensorFlow框架实现vgg16的迁移学习】
本次数据集来自kaggle,该数据集包括自然场景的图像。模型应该预测每个图像的正确标签。目标是实现分类问题的高精度。原创 2024-12-25 11:46:32 · 1875 阅读 · 0 评论 -
深度学习实战:kaggle竞赛:TensorFlow.Keras实现双层LSTM进行风暴预测 python+Keras源码
本文使用Keras搭建双层LSTM来预测两个二分类变量。原创 2024-12-21 01:00:00 · 2034 阅读 · 0 评论 -
【kaggle深度学习实战--保险数据集的回归-基于pytorch-Regression with an Insurance Dataset】
在数据量大的情况下,使用pytorch-TabNet 架构,并使用gpu进行训练对保单金额进行预测原创 2024-12-20 09:15:22 · 1834 阅读 · 4 评论