本人现在是北邮人工智能专业大二的小趴菜。由于大一的时候摆烂导致没啥技术储备,大二决定痛改前非。现在开一个专题来记录自己阅读pytorch框架的过程。也算是一种监督学习了吧()。
闲盐少许,开始我们第一天Datatest的学习。
至于为什么第一天不是tensor,昨天忘了写文章了......
Datasets & DataLoaders
官网很直白的告诉我们了,我们再写代码的时候很可能遇到一些问题。之中一个问题就是预处理的代码会很混乱并且难以维护。pytorch提供给我们两个可读性更高和模块化更好的方法。并且pytorch允许我们使用预加载数据集(当然肯定支持我们自己的数据集)。这三个是dataset的库:
torch.utils.data.DataLoadertorch.utils.data.DatasetDatasetDataLoaderDataset
此外,pytorch还提供了很多预加载的数据集。这些库可以进行基准函数的测试。这里就不放连接了,可以到上面的网址查看。
loding data set:
接下来是一个加载数据集的实例。这个数据集是Fashion-MNIST ,来自torchversion由 60,000 个训练示例和 10,000 个测试示例组成。 每个示例都包含一个 28×28 灰度图像和一个来自 10 个类之一的关联标签。
#引入的必要的头文件
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
training_data = datasets.FashionMNIST(#这是训练集,实例化对象training——test
root="data",#创建相对路径,在你的项目所在文件夹新建一个data名字文件夹,你可以自己取名
train=True,
download=True,#允许从互联网下载数据集,大小大概80M
transform=ToTensor()#转换成tensor类型
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
#创建了一个字典,方便下文打印输出对应属性图片的名字
labels_map = {
0: "T-Shirt",
1: "Trouser",
2: "Pullover",
3: "Dress",
4: "Coat",
5: "Sandal",
6: "Shirt",
7: "Sneaker",
8: "Bag",
9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))#创建一个画布,大小为8*8英寸
cols, rows = 3, 3#行数列数为3,3
for i in range(1, cols * rows + 1):#打印九次,1到10
sample_idx = torch.randint(len(training_data), size=(1,)).item()#随机数函数,样本索引是#一个随机数,从上面创建training_data选择图片
img, label = training_data[sample_idx]#图片,标签是训练集里的图片,标签是字典里的数字
#这里有个点:训练集里面的标签是数字,而为了方便阅读,名字是我们自己取名的,放在上面字典里
figure.add_subplot(rows, cols, i)#在3*3的网格里创建i个子图
plt.title(labels_map[label])#打印对应字典里的标签
plt.axis("off")#隐藏坐标轴
plt.imshow(img.squeeze(), cmap="gray")#黑白显示
plt.show()#打印输出
从官网我们得知,一个数据集必须要有三个基本的方法:
__init__, __len__, and __getitem__
写入,长度和获取内容
下面是创建自己的数据集的代码:
import os # 处理文件路径的包
import pandas as pd # 读取CSV文件的包
from torchvision.io import read_image # 读取tensor格式图像
class CustomImageDataset(Dataset):#创建一个自己的数据集的类
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):#构造函数,继承Dataset
#使得pytorch可以处理这个类 ps:什么是python继承?
self.img_labels = pd.read_csv(annotations_file)#csv文件夹路径
self.img_dir = img_dir#存储文件夹路径
self.transform = transform#图像处理方法
self.target_transform = target_transform#标签处理方法
def __len__(self):
return len(self.img_labels)#获取数据集长度
def __getitem__(self, idx):#获取数据方法
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])#给出图片,图片标签路径
image = read_image(img_path)#读取图片
label = self.img_labels.iloc[idx, 1]#获取标签
if self.transform:#如果有转换,进行转换
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label#返回图片标签
使用数据集:
from torch.utils.data import DataLoader#批量化加载工具,自动打乱数据多线程加载
train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
#shuffle是打乱数据,防止过拟合
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)
# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
#获取train_dataloder迭代器,并获取下一轮数据
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()#去除维度为1的元素
#eg:[3,2,1,1,3]->[3,2,3]
label = train_labels[0]
plt.imshow(img, cmap="gray")#灰度图像
plt.show()
print(f"Label: {label}")
至此完成了引用数据集,创建自己的数据集,和使用数据集的方法。楼主看文档的时候忘记python的继承了,复习一下。
继承:
class Parent:
def func1(self):
print("这是父类的方法")
class Child(Parent): # 继承 Parent 类
def func2(self):
print("这是子类的方法")
# 创建子类对象
c = Child()
c.func1() # 继承父类方法
c.func2() # 子类自己的方法
结果:
这是父类的方法
这是子类的方法
子类的括号里面是父类,上文自己创建的数据集括号内是Dataset,这个类继承自dataset,可以使用pytorch的类的方法,更方便后续的操作。
class CustomImageDataset(Dataset):#创建一个自己的数据集的类
此外还支持多重继承(继承爸爸妈妈类),多层继承(继承爸爸爷爷类)和方法的重写,这里就不赘述了。
写在最后:
题主第一次写文章,肯定会有错误,欢迎广大大佬斧正!