洛谷P2367 语文成绩(一维差分模板)

题目传送门
题目难度:普及一

语文成绩

题目背景

语文考试结束了,成绩还是一如既往地有问题。

题目描述

语文老师总是写错成绩,所以当她修改成绩的时候,总是累得不行。她总是要一遍遍地给某些同学增加分数,又要注意最低分是多少。你能帮帮她吗?

输入格式

第一行有两个整数 n n n p p p,代表学生数与增加分数的次数。

第二行有 n n n 个数, a 1 ∼ a n a_1 \sim a_n a1an,代表各个学生的初始成绩。

接下来 p p p 行,每行有三个数, x x x y y y z z z,代表给第 x x x 个到第 y y y 个学生每人增加 z z z 分。

输出格式

输出仅一行,代表更改分数后,全班的最低分。

样例 #1

样例输入 #1

3 2
1 1 1
1 2 1
2 3 1

样例输出 #1

2

提示

对于 40 % 40\% 40% 的数据,有 n ≤ 1 0 3 n \le 10^3 n103

对于 60 % 60\% 60% 的数据,有 n ≤ 1 0 4 n \le 10^4 n104

对于 80 % 80\% 80% 的数据,有 n ≤ 1 0 5 n \le 10^5 n105

对于 100 % 100\% 100% 的数据,有 n ≤ 5 × 1 0 6 n \le 5\times 10^6 n5×106 p ≤ n p \le n pn,学生初始成绩 $ \le 100 , , z \le 100$。

题目分析:读完本题很容易看出是需要用到差分,下面介绍下什么是差分。

差分:差分其实就是前缀和的逆运算~~

对于差分算法我们一般得先构造差分数组 ,假设现在有两个数组 a和 b\我们需要构造 b为差分数组,使得 a数组是 b的前缀和数组就是说a 中每一个数据,都是 b中在包括这个位置之前所有的数据的和。这时 b 被称为 a 的差分。所以 b数组每个元素无非就是 a
𝑎数组的每一个元素与其前一个元素的~~

为什么这么说?我们来算一下就知道了:
a[i]=b[1]+b[2]+…+b[i]
a[i−1]=b[1]+b[2]+…+b[i−1]
a[i]−a[i−1]=(b[i]+b[i−1]+…+b[2]+b[1])−(b[i−1]+…+b[2]+b[1])=b[i]

在这里插入图片描述
那么这里的 构造过程 实际上就是遍历一遍 a 数组,就可以构造出 b ,时间复杂度为O(N)。我们再看看代码怎么写:

for (int i = 1; i <= n; i++) {
        b[i] = a[i] - a[i - 1];
    }

差分算法是为了解决让 序列中某段区间 [l,r] 加上一个 常数 c 的问题。假设现在 a是原数组,差分数组 b 已经求好了,此时要让 a数组 [l,r]区间内 +c只需要让 b[l]+=c,让b[r+1]−=c 即可,时间复杂度为 O(1)

下面奉上本题代码:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5 * 1e6 + 10;

int b[N],a[N];
int n,m;

void insert(int l,int r,int c)
{
	b[l]+=c;
	b[r+1]-=c; 
}

ll read()
{
	ll s=0,f=1;
	char ch=getchar();
	
	while (ch<'0'||ch>'9')
	{
   	   if (ch=='-') f=-1;
	   ch=getchar();
	}
	while (ch>='0'&&ch<='9')
	{
	   s=s*10+ch-'0';
	   ch=getchar();
	}
	return s*f;
}

int main() {
   
    n = read(),m = read();
    
    for(int i = 1; i <= n; i++)
    {
    	a[i] = read();
    	insert(i,i,a[i]);//构建差分数组 
	}
	 
	while(m--)
	{
		int x = read(),y = read(),z = read();
		insert(x,y,z);		
	}  
	
	for(int i = 1; i <= n; i++) b[i] += b[i-1];
	
	sort(b + 1,b + 1 + n);
	cout<<b[1];
		   
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值