目录
stack和queue是C++标准库中的容器适配器,它们本身不提供迭代器支持;
1. stack的介绍和使用
1.1 stack的介绍
1. stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。
2. stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提供一组特定 的成员函数来访问其元素,将特定类作为其底层的,元素特定容器的尾部(即栈顶)被压入和弹出。
3. stack的底层容器可以是任何标准的容器类模板或者一些其他特定的容器类,这些容器类应该支持以下 操作: empty:判空操作 ,back:获取尾部元素操作, push_back:尾部插入元素操作, pop_back:尾部删除元素操作
4. 标准容器vector、deque、list均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器, 默认情况下使用deque。
deque的原理介绍
1.deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和 删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。
deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维 数组。双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落 在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,
2.deque的缺陷
与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不 需要搬移大量的元素,因此其效率是必vector高的。 与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。
但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到 某段小空间的边界(如果到达边界,就需要切换到下一个或前一个块,开销大),导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构 时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作 为stack和queue的底层数据结构。
1.2 stack的使用
stack和queue是C++标准库中的容器适配器,它们本身不提供迭代器支持;
1.3 stack的模拟实现
从栈的接口中可以看出,栈实际是一种特殊的vector,因此使用vector完全可以模拟实现stack。
#include<vector>
namespace bite
{
template<class T>
class stack
{
public:
stack() {}
void push(const T& x) {_c.push_back(x);}
void pop() {_c.pop_back();}
T& top() {return _c.back();}
const T& top()const {return _c.back();}
size_t size()const {return _c.size();}
bool empty()const {return _c.empty();}
private:
std::vector<T> _c;
}
}
但我们还是要仿照底层容器适配器的形式,做一次比较完整的模拟:
#pragma once
#include<iostream>
#include <deque>
using namespace std;
template<class T,class Container = deque<T>>
class Stack
{
public:
void push(const T& x)
{
_container.push_back(x);
}
void pop()
{
_container.pop_back();
}
int size()
{
return _container.size();
}
const T& top()
{
return _container.back();
}
bool empty()
{
return _container.empty();
}
private:
Container _container;
};
stack的实现非常简单,因为我们用了容器适配器,将底层的操作都交给了stl容器,这些容器都已经做足了封装,我们就不用关心那么多了,像图中代码,我们默认采用deque容器来存储数据,当然也可以显示传入vector、list都行;
不用写构造、拷贝构造、析构等等,因为底层只有一个容器,我们只需要调用容器的构造、析构等即可,不用自己额外去写;
2. queue的介绍和使用
2.1 queue的介绍
1. 队列是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,其中从容器一端插入元素,另一端 提取元素。
2. 队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的 成员函数来访问其元素。元素从队尾入队列,从队头出队列。
3. 底层容器可以是标准容器类模板之一,也可以是其他专门设计的容器类。该底层容器应至少支持以下操 作: empty:检测队列是否为空 ,size:返回队列中有效元素的个数, front:返回队头元素的引用 ,back:返回队尾元素的引用 ,push_back:在队列尾部入队列, pop_front:在队列头部出队列;
4. 标准容器类deque和list满足了这些要求。默认情况下,如果没有为queue实例化指定容器类,则使用标准容器deque。
2.2 queue的使用接口
2.3 queue的模拟实现
template<class T, class Container = deque<T>>
class Queue
{
public:
void push(const T& x)
{
_container.push_back(x);
}
void pop()
{
_container.pop_front();
}
int size()
{
return _container.size();
}
const T& front()
{
return _container.front();
}
const T& back()
{
return _container.back();
}
bool empty()
{
return _container.empty();
}
private:
Container _container;
};
3. priority_queue的介绍和使用
3.1 priority_queue的介绍
1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。
2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元 素)。
3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特 定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。
4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作: empty():检测容器是否为空, size():返回容器中有效元素个数, front():返回容器中第一个元素的引用, push_back():在容器尾部插入元素;pop_back():删除容器尾部元素;
5. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指 定容器类,则使用vector。
6. 底层容器需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数 make_heap、push_heap和pop_heap来自动完成此操作。
注意:stack和queue默认采用deque,而priority_queue默认采用vector,原因如下:
stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可 以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有 push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和 queue默认选择deque作为其底层容器,主要是因为:
1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长 时,deque不仅效率高,而且内存使用率高。 结合了deque的优点,而完美的避开了其缺陷。
优先队列则默认使用vector作为底层容器,因为它需要支持随机访问迭代器,以便高效实现堆算法(如makeheap、pushheap和popheap)。vector的连续内存布局使得堆操作更加高效,而deque虽然支持随机访问,但其内存分布不如vector紧凑,堆操作(遍历)时可能需要额外的开销。说白了,优先队列在构建堆的时候会遍历容器,所以不适合用deque;
3.2 priority_queue的使用
优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成 堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意: 默认情况下priority_queue是大堆。
【注意】 1. 默认情况下,priority_queue是大堆。
第三个模板参数是仿函数(functor),用于自定义元素的比较规则,从而控制队列的排序方式;
默认情况下,优先队列使用std::less
作为比较规则,其底层按照小于号比较,形成大顶堆(降序排列)。通过第三个模板参数,可以传入自定义的比较逻辑,例如使用std::greater
实现小顶堆(升序排列),其底层按照大于号比较;
顺带一提,在不同容器中,less和greater的行为表现有所不同:
-
priority_queue:
- greater使堆顶元素为最小值(小顶堆)
- less使堆顶元素为最大值(大顶堆)
-
sort、multiset、vector等:
- less实现从小到大排序
- greater实现从大到小排序
2. 如果在priority_queue中放自定义类型的数据,用户需要在自定义类型中提供> 或者< 的重载。
class Date
{
public:
Date(int year = 1900, int month = 1, int day = 1)
: _year(year)
, _month(month)
, _day(day)
{}
bool operator<(const Date& d)const
{
return (_year < d._year) ||
(_year == d._year && _month < d._month) ||
(_year == d._year && _month == d._month && _day < d._day);
}
bool operator>(const Date& d)const
{
return (_year > d._year) ||
(_year == d._year && _month > d._month) ||
(_year == d._year && _month == d._month && _day > d._day);
}
friend ostream& operator<<(ostream& _cout, const Date& d)
{
_cout << d._year << "-" << d._month << "-" << d._day;
return _cout;
}
private:
int _year;
int _month;
int _day;
};
void TestPriorityQueue()
{
// 大堆,需要用户在自定义类型中提供<的重载
priority_queue<Date> q1;
q1.push(Date(2018, 10, 29));
q1.push(Date(2018, 10, 28));
q1.push(Date(2018, 10, 30));
cout << q1.top() << endl;
// 如果要创建小堆,需要用户提供>的重载
priority_queue<Date, vector<Date>, greater<Date>> q2;
q2.push(Date(2018, 10, 29));
q2.push(Date(2018, 10, 28));
q2.push(Date(2018, 10, 30));
cout << q2.top() << endl;
}
3.4 priority_queue的模拟实现
(1)比较逻辑的实现
template<class T>
class myless
{
public:
bool operator()(const T& a, const T& b)
{
return a < b;
}
};
template<class T>
class mygreater
{
public:
bool operator()(const T& a, const T& b)
{
return a > b;
}
};
在堆操作中,会涉及到元素的比较大小,我们通过函数模版修饰的仿函数对象来实现了各种类型的比较大小,其中,myless依赖于小于,mygreater依赖大于实现,但是对于自定义类型,要想也使用这两个仿函数对象来比较大小,必须在类中重载>和<运算符,这和我们上面说的对应上了!
在堆操作中离不开向上调整和向下调整算法,接下来就实现它们:
(2)向上、向下调整算法接口
void adjustUP(int child)
{
func comp;
int parent = (child - 1) / 2;
while (child > 0)
{
if (comp(_container[parent], _container[child]))
{
swap(_container[parent], _container[child]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
void adjustDown(int parent)
{
func comp;
int child = parent * 2 + 1;
while (child < _container.size())
{
if (child + 1 < _container.size() && func(_container[child], _container[child+1]))
{
child++;
}
if (comp(_container[parent], _container[child]))
{
swap(_container[parent], _container[child]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
这两个算法接口在我前面整理数据结构专栏中,对“堆”的模拟实现中有讲,大家可以看一下:深入解析二叉树(包含堆结构)数据结构-CSDN博客
区别是在比较元素上需要用我们定义的仿函数对象,可能比较绕;
(3)整体实现
有了前面的辅助接口,接下来实现优先队列就很简单了,首先,它也是一个容器适配器,默认采用vector存储,且第三个模版参数代表比较逻辑,默认采用less,也就是建大堆;其余接口的实现思路基本和实现堆结构时一样。深入解析二叉树(包含堆结构)数据结构-CSDN博客
注意:当我们想要建小堆,就需要传入mygreater了,如果是自定义类型,还需要重载比较运算符;这些和stl的优先队列保持一致!
namespace test
{
template<class T>
class myless
{
public:
bool operator()(const T& a, const T& b)
{
return a < b;
}
};
template<class T>
class mygreater
{
public:
bool operator()(const T& a, const T& b)
{
return a > b;
}
};
template<class T,class Container = vector<T>,class func = myless<T>>
class Priority_queue
{
public:
Priority_queue() = default;
template<class Inputinitial>
Priority_queue(Inputinitial first, Inputinitial last)
{
while (first != last)
{
_container.push_back(*first);
first++;
}
for (int i = (_container.size() - 1 - 1) / 2; i >= 0; i--)
{
adjustDown(i);
}
}
void push(const T& x)
{
_container.push_back(x);
adjustUP(_container.size() - 1);
}
void pop()
{
swap(_container[0], _container[_container.size() - 1]);
_container.pop_back();
adjustDown(0);
}
const T& top()
{
return _container[0];
}
int size()
{
return _container.size();
}
bool empty()
{
return _container.empty();
}
private:
void adjustUP(int child)
{
func comp;
int parent = (child - 1) / 2;
while (child > 0)
{
if (comp(_container[parent], _container[child]))
{
swap(_container[parent], _container[child]);
child = parent;
parent = (child - 1) / 2;
}
else
{
break;
}
}
}
void adjustDown(int parent)
{
func comp;
int child = parent * 2 + 1;
while (child < _container.size())
{
if (child + 1 < _container.size() && func(_container[child], _container[child+1]))
{
child++;
}
if (comp(_container[parent], _container[child]))
{
swap(_container[parent], _container[child]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
private:
Container _container;
};
}
4. 容器适配器
4.1 什么是适配器
适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总 结),该种模式是将一个类的接口转换成客户希望的另外一个接口。
4.2 STL标准库中stack和queue的底层结构
虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque,比如: