离散复习day2

欧拉图和哈密顿图

定义

判别方式

简要速记,欧拉图能过完所有边并形成回路,哈密顿过完所有的点回路。

习题

谓词逻辑

1自由变元约束变元

2根据逻辑等价性,我们不能直接将¬∃x(P(x)∧¬Q(x))转换为¬(∃xP(x)∧∃x¬Q(x))。因为存在量词内部的逻辑表达式是独立的,我们不能简单地将它们分开。

3.存在量词对合取没有分配律。

4.全称实例化(UI)规则与存在实例化(EI)规则未掌握

5

我们需要理解存在量词∃的含义。在论域D中,如果存在至少一个元素x使得A(x)为真,那么公式∃xA(x)就为真。

6.量词的()是量词所约束的范围。//辖域

7

//没有分配律直接拆括号。

11

1半群独异点群定义

  1. 半群
    • 定义:半群是一个代数系统,由非空集合S和定义在S上的满足结合律的二元运算“·”组成,记作(S, ·)。
    • 性质:若对于所有x, y, z ∈ S,都有(x·y)·z = x·(y·z),则称(S, ·)为半群。
    • 举例:<Z+, +>(正整数集合和加法运算)是一个半群。
  2. 独异点(幺半群)
    • 定义:独异点(幺半群)是半群的一种特殊情况,其中除了满足半群的定义外,还包含一个单位元e,使得对于所有s ∈ S,都有e·s = s·e = s。
    • 性质:独异点是在半群的基础上增加了一个单位元的概念。
    • 举例:<N, +>(自然数集合和加法运算)是一个独异点,其中0是单位元。
    • 定义:群是一种更为特殊的代数结构,它不仅是独异点,而且要求每个元素都有逆元。即对于群G中的任意元素a,都存在一个元素b(称为a的逆元),使得a·b = b·a = e(其中e是单位元)。
    • 性质:群满足封闭性、结合律、有单位元和每个元素都有逆元。
    • 举例:<R*, ×>(非零实数集合和乘法运算)是一个群,其中1是单位元,每个非零实数a的逆元是1/a。

总结:

  • 半群是最基础的代数结构,仅要求二元运算满足结合律。
  • 独异点(幺半群)在半群的基础上增加了一个单位元的概念。
  • 群在独异点的基础上进一步要求每个元素都有逆元。

  • 集合S = {0, 1},运算*为普通乘法。
  • 对于结合律,我们知道普通乘法总是满足结合律的,所以(S, *)是一个半群。
  • 对于幺元,我们知道1是乘法下的幺元,因为对于所有a ∈ S,有1 * a = a * 1 = a。这意味着(S, *)是一个独异点。
  • 对于逆元,我们注意到在S中,只有1有逆元,即它自身。但是0没有逆元,因为不存在任何数x使得0 * x = 1。这意味着(S, *)不是一个群。

判断顺序先判断结合律是否为半群,再看幺元,独异点,最后看逆元

2单位元幺元的定义

位元在进行运算时起着“恒等”或“不变”的作用

//学到这基础知识算都过了一遍,明天刷一套题,顺便看看有什么大题。结合老师课上讲的。想起来了图还有树的部分没有过。

3阶群

1阶的性质

2定理

(1)Va e G,a的阶为m,则a”= e当且仅当m|n。

(2)若G是有限群,则每个元素的阶都是有限的,且不大于群G的阶,

(3)VaeG,|a|=|a-1|,即元素a和其逆元a-1的阶相同。

(4)Va,beG,|a=m,|b=n,若(m,n)=1,ab=ba,则|ab|=mn。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值