欧拉图和哈密顿图
定义
判别方式
简要速记,欧拉图能过完所有边并形成回路,哈密顿过完所有的点回路。
习题
谓词逻辑
1自由变元约束变元
2根据逻辑等价性,我们不能直接将¬∃x(P(x)∧¬Q(x))转换为¬(∃xP(x)∧∃x¬Q(x))。因为存在量词内部的逻辑表达式是独立的,我们不能简单地将它们分开。
3.存在量词对合取没有分配律。
4.全称实例化(UI)规则与存在实例化(EI)规则未掌握
5
我们需要理解存在量词∃的含义。在论域D中,如果存在至少一个元素x使得A(x)为真,那么公式∃xA(x)就为真。
6.量词的()是量词所约束的范围。//辖域
7
//没有分配律直接拆括号。
群
11
1半群独异点群定义
- 半群:
- 定义:半群是一个代数系统,由非空集合S和定义在S上的满足结合律的二元运算“·”组成,记作(S, ·)。
- 性质:若对于所有x, y, z ∈ S,都有(x·y)·z = x·(y·z),则称(S, ·)为半群。
- 举例:<Z+, +>(正整数集合和加法运算)是一个半群。
- 独异点(幺半群):
- 定义:独异点(幺半群)是半群的一种特殊情况,其中除了满足半群的定义外,还包含一个单位元e,使得对于所有s ∈ S,都有e·s = s·e = s。
- 性质:独异点是在半群的基础上增加了一个单位元的概念。
- 举例:<N, +>(自然数集合和加法运算)是一个独异点,其中0是单位元。
- 群:
- 定义:群是一种更为特殊的代数结构,它不仅是独异点,而且要求每个元素都有逆元。即对于群G中的任意元素a,都存在一个元素b(称为a的逆元),使得a·b = b·a = e(其中e是单位元)。
- 性质:群满足封闭性、结合律、有单位元和每个元素都有逆元。
- 举例:<R*, ×>(非零实数集合和乘法运算)是一个群,其中1是单位元,每个非零实数a的逆元是1/a。
总结:
- 半群是最基础的代数结构,仅要求二元运算满足结合律。
- 独异点(幺半群)在半群的基础上增加了一个单位元的概念。
- 群在独异点的基础上进一步要求每个元素都有逆元。
- 集合S = {0, 1},运算*为普通乘法。
- 对于结合律,我们知道普通乘法总是满足结合律的,所以(S, *)是一个半群。
- 对于幺元,我们知道1是乘法下的幺元,因为对于所有a ∈ S,有1 * a = a * 1 = a。这意味着(S, *)是一个独异点。
- 对于逆元,我们注意到在S中,只有1有逆元,即它自身。但是0没有逆元,因为不存在任何数x使得0 * x = 1。这意味着(S, *)不是一个群。
判断顺序先判断结合律是否为半群,再看幺元,独异点,最后看逆元
2单位元幺元的定义
单位元在进行运算时起着“恒等”或“不变”的作用
//学到这基础知识算都过了一遍,明天刷一套题,顺便看看有什么大题。结合老师课上讲的。想起来了图还有树的部分没有过。
3阶群
1阶的性质
2定理
(1)Va e G,a的阶为m,则a”= e当且仅当m|n。
(2)若G是有限群,则每个元素的阶都是有限的,且不大于群G的阶,
(3)VaeG,|a|=|a-1|,即元素a和其逆元a-1的阶相同。
(4)Va,beG,|a=m,|b=n,若(m,n)=1,ab=ba,则|ab|=mn。