目录
卷积神经网络是深度学习中非常基础且重要的模型,是我们入门深度学习的基础,是需要我们不断地去总结回顾的。祝大家都能打牢基础!
卷积神经网络(Convolutional Neural Networks,CNNs)是一种深度学习模型,特别适用于处理具有网格状拓扑结构的数据,如图像(2D 网格)和视频(3D 网格)。
基本架构
-
输入层(Input Layer):
- 接收图像数据,通常是 3D 张量(高度 x 宽度 x 通道数,例如 RGB 图像为 224x224x3),如果是灰度图的话,那么通道数为1
-
卷积层(Convolutional Layer):
- 使用一组可学习的卷积核(过滤器)对输入进行卷积操作,提取特征。
- 卷积核(过滤器)的大小通常较小,如 3x3 或 5x5。
- 通过滑动卷积核(过滤器)在输入数据上,生成特征图(feature maps)。
-
激活函数:
- 常用的激活函数是 ReLU(Rectified Linear Unit),用于引入非线性。
-
池化层(Pooling Layer):