CNN-卷积神经网络

目录

基本架构

初学者注意事项


卷积神经网络是深度学习中非常基础且重要的模型,是我们入门深度学习的基础,是需要我们不断地去总结回顾的。祝大家都能打牢基础!

卷积神经网络(Convolutional Neural Networks,CNNs)是一种深度学习模型,特别适用于处理具有网格状拓扑结构的数据,如图像(2D 网格)和视频(3D 网格)。

基本架构

  1. 输入层(Input Layer)

    • 接收图像数据,通常是 3D 张量(高度 x 宽度 x 通道数,例如 RGB 图像为 224x224x3),如果是灰度图的话,那么通道数为1
  2. 卷积层(Convolutional Layer)

    • 使用一组可学习的卷积核(过滤器)对输入进行卷积操作,提取特征。
    • 卷积核(过滤器)的大小通常较小,如 3x3 或 5x5。
    • 通过滑动卷积核(过滤器)在输入数据上,生成特征图(feature maps)。
  3. 激活函数

    • 常用的激活函数是 ReLU(Rectified Linear Unit),用于引入非线性。
  4. 池化层(Pooling Layer)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值