大一新生算法学习打卡DAY03

P1598 垂直柱状图 - 洛谷        //模拟,字符串

垂直柱状图,没什么难度,全是细节。注意看清题目,观察输出样例到底列与列之间有没有空格之类。

#include <iostream>
#include <cstring>
using namespace std;
const int N=410;
char op[N][N];
int sum[30]={0};
int main(){
	int maxi=0;
	for(int i=1;i<=4;i++){
		string a;
	    getline(cin,a);
		
		for(int i=0;i<a.size();i++){
			if(a[i]>='A'&&a[i]<='Z'){
//				sum[a[i]-'A']++;
				maxi=max(maxi,++sum[a[i]-'A']);
			}
		}
	}
	
	for(int j=0;j<26;j++){
		op[0][j]=j+'A';
		for(int i=1;i<=sum[j];i++){
			op[i][j]='*';
		}
	}
	
	for(int i=maxi;i>=0;i--){
		for(int j=0;j<26;j++){
			if(op[i][j]>='A'&&op[i][j]<='Z'){
				cout<<op[i][j];
			}else if(op[i][j]!='*'){
				cout<<' ';
			}else{
				cout<<op[i][j];
			}
			
			if(j!=25){
				cout<<' ';
			}
		}
		cout<<endl;
	}
	
	return 0;
}

各单位注意!各单位注意!读入两个整型变量后,再读一个字符串的话,一定要先读取空格和换行符!一定要!!!不然就会这样:

1111. 字母 - AcWing题库

较为简单的dfs, 标记(走过,没走过),dfs(l,r,cnt+1);(不使用cnt++这种的)

如果有大佬能够想出更好的解法的话,请务必告诉我啊!感觉自己的代码有些臃肿……

#include <iostream>
using namespace std;
const int N=30;
char op[N][N];
bool vis[N];
int n,m,res=0;
int dir[4][2]={{-1,0},{0,-1},{1,0},{0,1}};

void dfs(int x,int y,int cnt){
    res=max(res,cnt);
    if(res==26)return;
    
    for(int i=0;i<4;i++){
        int l=x+dir[i][0];
        int r=y+dir[i][1];
        if(l>=0&&l<n&&r>=0&&r<m&&!vis[op[l][r]-'A']){
            vis[op[l][r]-'A']=1;
            dfs(l,r,cnt+1);
            vis[op[l][r]-'A']=0;
        }
    }
}
int main(){
    cin>>n>>m;
    
    for(int i=0;i<n;i++){
        for(int j=0;j<m;j++){
            cin>>op[i][j];
        }
    }
    
    vis[op[0][0]-'A']=1;
    dfs(0,0,1);
    cout<<res;
    return 0;
}

1230. K倍区间 - AcWing题库    (前缀和)+(有点难)

此题需要寻找符合区间和为k的倍数的区间的个数。

寻找此类区间时,首先要对区间条件进行分析,知道此题为求区间和需要使用前缀和,所以一开始想的是将区间中互补的区间融合在一起计算k倍区间,可是发现这样既要考虑区间之间是否邻近,又要考虑如何在适合的时间内枚举出所有区间类型,遂无解。

但是看了题解后,发现其实不用考虑相加,反而可以考虑相减,因为此题中没有负数,因此对于前缀和来说肯定是越往后数字越大的,据此向前求区间边界点则必定不可能失败,那么只需要找能消去它多余数字的区间边界点即可。而由于一个数字也算一个区间,因此在结果时要将符合条件的单个数字的区间也考虑进去,对此只需要加上sum0即可。

#include <iostream>
using namespace std;
#define int long long 
const int N=100010;
int s[N],sum[N]={0};
signed main(){
	int n,k;
	scanf("%lld %lld",&n,&k);
	
	int res=0;
	sum[0]=1;
	for(int i=1;i<=n;i++){
		int t;
		scanf("%lld",&t);
		s[i]=(s[i-1]+t)%k;
		
		res+=sum[s[i]];
		sum[s[i]]++;
	}
	
	printf("%lld",res);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值