P1598 垂直柱状图 - 洛谷 //模拟,字符串
垂直柱状图,没什么难度,全是细节。注意看清题目,观察输出样例到底列与列之间有没有空格之类。
#include <iostream>
#include <cstring>
using namespace std;
const int N=410;
char op[N][N];
int sum[30]={0};
int main(){
int maxi=0;
for(int i=1;i<=4;i++){
string a;
getline(cin,a);
for(int i=0;i<a.size();i++){
if(a[i]>='A'&&a[i]<='Z'){
// sum[a[i]-'A']++;
maxi=max(maxi,++sum[a[i]-'A']);
}
}
}
for(int j=0;j<26;j++){
op[0][j]=j+'A';
for(int i=1;i<=sum[j];i++){
op[i][j]='*';
}
}
for(int i=maxi;i>=0;i--){
for(int j=0;j<26;j++){
if(op[i][j]>='A'&&op[i][j]<='Z'){
cout<<op[i][j];
}else if(op[i][j]!='*'){
cout<<' ';
}else{
cout<<op[i][j];
}
if(j!=25){
cout<<' ';
}
}
cout<<endl;
}
return 0;
}
各单位注意!各单位注意!读入两个整型变量后,再读一个字符串的话,一定要先读取空格和换行符!一定要!!!不然就会这样:
较为简单的dfs, 标记(走过,没走过),dfs(l,r,cnt+1);(不使用cnt++这种的)
如果有大佬能够想出更好的解法的话,请务必告诉我啊!感觉自己的代码有些臃肿……
#include <iostream>
using namespace std;
const int N=30;
char op[N][N];
bool vis[N];
int n,m,res=0;
int dir[4][2]={{-1,0},{0,-1},{1,0},{0,1}};
void dfs(int x,int y,int cnt){
res=max(res,cnt);
if(res==26)return;
for(int i=0;i<4;i++){
int l=x+dir[i][0];
int r=y+dir[i][1];
if(l>=0&&l<n&&r>=0&&r<m&&!vis[op[l][r]-'A']){
vis[op[l][r]-'A']=1;
dfs(l,r,cnt+1);
vis[op[l][r]-'A']=0;
}
}
}
int main(){
cin>>n>>m;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
cin>>op[i][j];
}
}
vis[op[0][0]-'A']=1;
dfs(0,0,1);
cout<<res;
return 0;
}
1230. K倍区间 - AcWing题库 (前缀和)+(有点难)
此题需要寻找符合区间和为k的倍数的区间的个数。
寻找此类区间时,首先要对区间条件进行分析,知道此题为求区间和需要使用前缀和,所以一开始想的是将区间中互补的区间融合在一起计算k倍区间,可是发现这样既要考虑区间之间是否邻近,又要考虑如何在适合的时间内枚举出所有区间类型,遂无解。
但是看了题解后,发现其实不用考虑相加,反而可以考虑相减,因为此题中没有负数,因此对于前缀和来说肯定是越往后数字越大的,据此向前求区间边界点则必定不可能失败,那么只需要找能消去它多余数字的区间边界点即可。而由于一个数字也算一个区间,因此在结果时要将符合条件的单个数字的区间也考虑进去,对此只需要加上sum【0】即可。
#include <iostream>
using namespace std;
#define int long long
const int N=100010;
int s[N],sum[N]={0};
signed main(){
int n,k;
scanf("%lld %lld",&n,&k);
int res=0;
sum[0]=1;
for(int i=1;i<=n;i++){
int t;
scanf("%lld",&t);
s[i]=(s[i-1]+t)%k;
res+=sum[s[i]];
sum[s[i]]++;
}
printf("%lld",res);
return 0;
}