ResNet改进(51):基于轴向注意力机制的改进ResNet模型

1.创新点解析

在计算机视觉领域,卷积神经网络(CNN)一直是图像识别任务的主流架构。

近年来,注意力机制的引入为CNN带来了新的改进方向。

本文将详细解析一个结合了轴向注意力(Axial Attention)机制的改进ResNet模型,展示如何通过注意力机制增强传统CNN的性能。

模型概述

我们构建的CustomResNet基于经典的ResNet34架构,但进行了两个重要改进:

  1. 修改了初始卷积层,使用更小的卷积核(3x3)和步长1,保留更多空间信息

  2. 在残差块之间插入了轴向注意力模块,增强模型对长距离依赖关系的捕捉能力

轴向注意力模块

轴向注意力是自注意力机制的一种高效变体,它分别沿着高度和宽度两个轴向计算注意力,显著降低了计算复杂度。

class AxialAttention(nn.Module):
    def __init__(self, in_channels, heads=8):
        super(AxialAttention, self).__init__()
        self.heads = heads
        self.scale = (in_channels
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值