(一)需求说明
对电商订单数据进行处理,订单数据包含用户 ID 和订单金额,不同地区的用户有不同的 ID 范围。我们会按照地区对订单数据进行分区,这样做能让相同地区的订单数据处于同一分区,便于后续按地区进行统计金额分析。
订单数据如下:
(500, 100.0),
(1200, 200.0),
(2500, 300.0),
(800, 150.0),
(1800, 250.0),
(2200, 350.0)
要求是
0-1000号分成一个区;
1001-2000号分成一个区;
2000-号分成一个区
(二)思路分析
为了按照地区(用户 ID 范围)对电商订单数据进行分区并汇总订单金额,我们需要经历几个关键步骤。首先,要将订单数据加载到合适的数据结构中,以便后续操作。接着,定义一个自定义分区器,根据用户 ID 范围把订单数据分到不同的分区。然后,对每个分区内的数据进行汇总操作,计算每个地区的订单总金额。
详细步骤
1. 数据加载
需要把给定的订单数据加载到 Spark 的 RDD(弹性分布式数据集)或者 DataFrame 中。在这个需求里,订单数据以键值对的形式存在,其中键是用户 ID,值是订单金额。可以使用 parallelize 方法把数据转换成 RDD。
2. 自定义分区器
由于默认的分区器无法满足按照用户 ID 范围分区的需求,所以要自定义一个分区器。这个分区器要依据用户 ID 的范围把订单数据分到不同的分区。具体来说,将用户 ID 在 0 - 1000 的订单数据分到一个分区,1001 - 2000 的分到另一个分区,2001 及以上的分到第三个分区。
3. 数据分区
使用自定义分区器对 RDD 进行分区操作,确保相同地区(用户 ID 范围相同)的订单数据处于同一分区。
4. 数据汇总
对每个分区内的订单数据进行汇总,计算每个地区的订单总金额。可以使用 reduceByKey 或者 aggregateByKey 等方法来实现汇总操作。
5. 结果输出
将汇总后的结果输出,展示每个地区的订单总金额。
(三)难点及突破
难点一:自定义分区器的实现
问题描述:需要根据特定的用户 ID 范围来定义分区规则,确保相同地区的订单数据被分配到相同的分区。这需要对 Spark 的分区机制有深入的理解,并且要正确实现自定义分区器的逻辑。
突破方法:仔细研究 Spark 的分区相关文档和示例,明确自定义分区器需要实现的方法和接口。在代码中,通过编写一个自定义的分区函数,根据用户 ID 的范围返回对应的分区编号。如在之前的示例代码中,custom_partitioner 函数根据不同的 ID 范围返回 0、1、2 三个分区编号,从而实现按照地区进行分区的目的。
难点二:自定义的分区来进行汇总
问题描述:按照自定义的分区进行划分之后,要进行金额的汇总,使用的api是mapPartitionsWithIndex 。
突破方法:mapPartitionsWithIndex这个方法需要传入一个函数,这个函数的返回值也是一个遍历器,在这个遍历器中输出处理之后的结果。
(四)功能实现
创建新的maven项目。
创建input文件夹,在input下新建记事本文件,其中内容就是前面的实例数据。
在src下创建新的scala文件,开始写功能代码。
// 1. 实现自定义分区器
// 2. 读文件,生成RDD
// 3. RDD使用自定义分区器分区
// 4. 对分区的数据进行汇总计算
// 5. 保存计算之后的结果
(五)参考代码
功能点1: 按用户的分区编号进行对原始数据进行分区。
功能点2: 对每一份数据进行金额汇总。
参考代码如下:
import org.apache.spark.{Partitioner, SparkConf, SparkContext}
// 创建一个类继承Partitioner
class OrderPartitioner extends Partitioner {
override def numPartitions: Int = 2 // 两个分区,编号就是: 0, 1
// key - value
override def getPartition(key: Any): Int = {
// 如果key在2001和2003之间,就返回 0
// 否则,返回 1
val keyInt = key.asInstanceOf[Int]
if (keyInt > 2000 && keyInt < 2003) {
0
} else {
1
}
}
}
// case class
case class Order(id: Int, price: Double, category: String)
object PartitionOrder {
def main(args: Array[String]): Unit = {
// 创建SparkContext
val conf = new SparkConf().setAppName("Partition").setMaster("local[*]")
val sc = new SparkContext(conf)
// 初始数据
val rdd = sc.textFile("data/order.csv")
val rdd1 = rdd.map( line => {
val fields = line.split(",")
(fields(0).toInt, Order(fields(0).toInt, fields(1).toDouble, fields(2)))
})
// 使用自定义分区器
val rdd2 = rdd1.partitionBy(new OrderPartitioner)
rdd2.map( x => x._2).saveAsTextFile("output18")
val regionTotalAmount = rdd2.mapPartitions((iter) => {
var count = 0
var totalAmount = 0.0
// 同时计算件数和总金额
while (iter.hasNext) {
val item = iter.next()
count += 1
val price = item._2.price
println(price)
totalAmount += price
}
Iterator(s"${count}件,$totalAmount")
})
// 在分区完成之后的基础上,只保留key
// val rdd3 = rdd2.map( x => x._2)
regionTotalAmount.saveAsTextFile("output19")
}
}