【激光雷达使用记录】—— 如何在ubuntu中利用ros自带的rviz工具实时可视化雷达点云的数据

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

RViz(ROS Visualization)是机器人操作系统(ROS)中的一个强大可视化工具,用于在开发和调试机器人应用程序时展示传感器数据、机器人模型及其状态信息。它支持多种数据类型,包括激光扫描、点云、地图、图像和机器人状态等。开发者可以通过RViz实时查看机器人感知的环境,调试导航、感知和控制算法。RViz的主要作用包括提供直观的3D界面,让开发者更容易理解和分析机器人所处环境及其行为;支持多种插件,用户可以根据需求自定义和扩展功能;方便调试,通过实时显示传感器数据和算法输出,帮助发现和解决问题;集成性强,可以与ROS生态系统中的其他工具无缝协作。总之,RViz是ROS开发过程中不可或缺的重要工具,极大地提高了开发效率和调试效果。

一、查看雷达数据的 frame_id

1. 查看雷达数据的话题

开启雷达的驱动之后,终端输入:

rostopic list

列出ros话题如下所示:

在这里插入图片描述

我的是雷达数据对应的话题为/velodyne_points,使用自己查到的即可。

2. 查看数据的frame_id

终端输入:

rostopic echo /velodyne_points | grep frame_id

其中,的/velodyne_points为自己的雷达数据的话题,页面如下图所示:

在这里插入图片描述

二、可视化雷达数据

(1) 打开rviz
终端输入:

rviz

(2) 设置rviz显示的数据
具体的步骤如下:
点击Add —— By topic —— 选择可视化数据话题 —— 点击OK

在这里插入图片描述

(3) 设置rviz显示的数据的Fixed_Frame

将rviz中的Fixed_Frame参数修改为自己雷达数据的frame_id,也就是上述步骤打印出来的frame_id,如下图所示:

在这里插入图片描述

(4) 最后,完成上述的配置之后,可视化的效果如下:

在这里插入图片描述
参考:

https://blog.csdn.net/m0_68312479/article/details/126445975?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171819944316800226540116%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=171819944316800226540116&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_ecpm_v1~rank_v31_ecpm-10-126445975-null-null.142v100pc_search_result_base4&utm_term=rviz%E5%8F%AF%E8%A7%86%E5%8C%96%E9%9B%B7%E8%BE%BE%E7%82%B9%E4%BA%91%E7%9A%84%E6%95%B0%E6%8D%AE&spm=1018.2226.3001.4187

总结

以上就是如何在ubuntu中利用ros自带的rviz工具实时可视化雷达点云的数据的全部流程,有什么问题可以评论区留言交流!

ROS(Robot Operating System)中,实时监听激光雷达点云数据利用rviz(Robot Visualization Toolkit)进行可视化,需要经过以下步骤: 1. **获取数据**: - 使用如`sensor_msgs/LaserScan`的数据包从激光雷达传感器(如Velodyne、Ouster等)读取点云数据。这通常通过`Subscriber`完成,就像之前解释过的那样。 2. **解析数据**: - 解析`LaserScan`消息,提取出包括角度、距离、反射强度等信息的点云数据。每个数据点包含了一组坐标和附加属性。 3. **将数据发布到RVIZ**: - 创建一个ROS话题或者服务(Publisher),将解析后的点云数据转换成适合rviz显示的数据结构,比如`geometry_msgs/PoseArray`或者`visualization_msgs/MarkerArray`。然后,将数据发布到`rviz`可以识别的主题(通常是`/tf`或者自定义主题)。 4. **配置rviz**: - 打开rviz,并创建一个新的场景或者加载预设。在rviz的“Display”选项卡下,添加合适的插件(例如`PointCloud2 Marker`或`Voxel Grid`)来展示点云数据。配置插件以匹配接收到的数据格式和主题。 5. **关联点云数据和机器人坐标系**: - 如果需要,你还需要确保在rviz中展示了机器人的运动状态,通常通过`TF`树来关联点云数据到车体或基座坐标系。 6. **实时更新**: - 当接收到新的点云数据时,不断地更新发布的主题,rviz会自动刷新显示。 一个简单的Python示例代码片段可能如下所示,这里仅提供关键部分: ```python # ... (其他数据处理部分) def publish_to_rviz(pointcloud_data): msg = ... # 将原始点云数据转换为适合rviz的msg格式 pub.publish(msg) # 发布数据rviz主题 # ... (回调函数) def callback_function(data): pointcloud_data = parse_laser_scan_data(data) publish_to_rviz(pointcloud_data) # ... (启动rviz) rospy.init_node('laser_to_rviz', anonymous=True) pub = rospy.Publisher('your_topic_name', YourRvizMessageType, queue_size=10) # ... (其他部分) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啥也不会的研究僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值