python代码实现Bottleneck Generalized Assignment Problems

本文介绍了BottleneckGeneralizedAssignmentProblem(TGBAP)的实现过程,包括数据初始化、构建新问题、寻找解的下限、验证可行性并递增搜索,最终输出可行方案和最小最大时间。作者使用Python实现了一个例子,并提供了相关数据集链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bottleneck Generalized Assignment Problems

参考文献:Mazzola J B, Neebe A W. Bottleneck generalized assignment problems[J]. Engineering Costs and Production Economics, 1988, 14(1): 61-65.

实现的总体思路:
1初始化相关的输入数据
2 根据cij与ck的关系建立新的TGBAP(K)问题
3 找到Z的下限,从这个下限开始往更大的数方向寻找
4 TGBAP(K)是否存在可行解,如果不存在的话,继续往下个数找,直到找到一个可行的TGBAP(K)
5 输出这个可行方案和对应的最小最大时间
上代码

详细的数据集见github地址https://github.com/yasuoman/BGAP

# project : BGAP
# file : TBGAP.py
# author:yasuoman
# datetime:2024/3/27 11:31
# software: PyCharm

"""
description:
说明:
"""
# 参考的文献Mazzola J B, Neebe A W. Bottleneck generalized assignment problems[J].
# Engineering Costs and Production Economics, 1988, 14(1): 61-65.
#且实现的是TBGAP

# 实现的总体思路:
# 1初始化相关的输入数据
# 2 根据cij与ck的关系建立新的TGBAP(K)问题
# 3 找到Z的下限,从这个下限开始往更大的数方向寻找
# 4 TGBAP(K)是否存在可行解,如果不存在的话,继续往下个数找,直到找到一个可行的TGBAP(K)
# 5 输出这个可行方案和对应的最小最大时间
import numpy as np

#这里是相关的数据集,输出相关的数据和变量
def construct\_dataset():
    m, n = 5, 10
    # 运行成本矩阵
    cost_matrix = np.array(
        [[36,102,35,31,18,25,30,76,108,82],
         [61,75,69,19,45,97,117,74,35,85],
         [34,79,26,114,27,44,25,76,93,89],
         [17,97,65,51,81,82,89,40,21,95],
         [70,7,74,79,74,44,52,94,107,108]])
    #
    # cost\_matrix = np.array(
    # [[36, 102, 35, 31, 18, 25, 30, 76, 108, 65],
    # [61, 75, 69, 19, 45, 97, 117, 74, 35, 85],
    # [34, 79, 26, 114, 27, 44, 25, 76, 93, 76],
    # [17, 97, 69, 51, 81, 82, 89, 40, 21, 95],
    # [70, 7, 74, 79, 74, 44, 52, 94, 107, 108]])
    # 资源需求矩阵
    resource_matrix = np.array(
        [[78,14,82,70,87,93,78,34,7,36],
        [59,28,40,89,69,21,3,32,70,33],
        [72,40,95,6,85,60,94,25,9,29],
        [96,16,34,57,39,29,20,62,95,16],
        [39,98,33,24,45,61,59,7,12,12]])

    # resource\_matrix = np.array(
    # [[78, 14, 82, 70, 87, 93, 78, 34, 7, 36],
    # [59, 28, 40, 89, 69, 21, 3, 32, 70, 33],
    # [72, 40, 95, 6, 85, 60, 94, 25, 9, 29],
    # [96, 16, 34, 57, 39, 29, 20, 62, 95, 16],
    # [39, 98, 33, 24, 45, 61, 59, 7, 12, 12]])

    # 机器资源容量向量
    capacity_vector = np.array([93,71,82,74,62])

    return m,n,cost_matrix,resource_matrix,capacity_vector
#这里是对http://www.al.cm.is.nagoya-u.ac.jp/~yagiura/gap/ 的a20100数据集进行简单的测试
#目前没有优化这组数据集的读取,只是写了个示例。有需要可以自行写这里的代码
# def construct\_dataset():
# with open('Data/gap\_a/a20100', 'r') as file:
# #先随便写着
# import re
# # 读取文件内容
# content = file.read()
# # words = content.split(' ')
# words= re.split(r'[ ,\n]+', content)
#
# m,n = int(words[1]),int(words[2])
# c\_list = words[3:2003]
# r\_list = words[2003:4003]
# cap\_list = words[4003:4023]
# c\_int\_list = [int(item) for item in c\_list]
# r\_int\_list = [int(item) for item in r\_list]
# cap\_int\_list = [int(item) for item in cap\_list]
# cost\_matrix = np.array(c\_int\_list).reshape(m, n)
# resource\_matrix = np.array(r\_int\_list).reshape(m, n)
# capacity\_vector =np.array(cap\_int\_list)
# return m, n, cost\_matrix, resource\_matrix, capacity\_vector



#输入resource\_matrix、cost\_matrix、capacity\_vector和初始的k,输出新的resource\_matrix矩阵
def reconstruct\_resource\_matrix(resource_matrix, cost_matrix, capacity_vector,k):
    import copy
    copy_resource_matrix =copy.deepcopy(resource_matrix)
    # 使用fancy indexing来更新矩阵
    mask = k < cost_matrix
    # resource\_matrix[mask] = 9999
    copy_resource_matrix[mask] = max(capacity_vector)
    return copy_resource_matrix

#输入新的resource\_matrix矩阵和capacity\_vector,输出一组可行解或输出FALSE,借用Pulp包求解
def find\_soulution(resource_matrix,capacity_vector,m,n):
    import pulp
    # 创建问题实例
    prob = pulp.LpProblem("Machine\_Assignment", pulp.LpMinimize)
    # 二元决策变量
    x = pulp.LpVariable.dicts("x", ((i, j) for i in range(m) for j in range(n)),
**自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**

**深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**

**因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。**

![img](https://img-blog.csdnimg.cn/img_convert/1c8b478e00070ce97156e81afac5fa06.png)

 

![img](https://img-blog.csdnimg.cn/img_convert/6c95fa06bb8872cb1942a6731638cfe0.png)

![img](https://img-blog.csdnimg.cn/img_convert/46506ae54be168b93cf63939786134ca.png)

![img](https://img-blog.csdnimg.cn/img_convert/252731a671c1fb70aad5355a2c5eeff0.png)

![img](https://img-blog.csdnimg.cn/img_convert/6c361282296f86381401c05e862fe4e9.png)

![img](https://img-blog.csdnimg.cn/img_convert/9f49b566129f47b8a67243c1008edf79.png)

 

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)**

伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)**

<img src="https://img-community.csdnimg.cn/images/fd6ebf0d450a4dbea7428752dc7ffd34.jpg" alt="img" style="zoom:50%;" />
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值