- 博客(75)
- 收藏
- 关注
原创 二、Linux文本处理与文件操作核心命令
熟悉了Linux的基本“行走”后,就该拿起真正的“工具”干活了。用grep这个“放大镜”在文件里搜索内容,用find这个“探测器”在系统中寻找文件,再用tar把东西打包带走。最关键的是要学会使用管道符|,它像一条流水线,能把这些命令串联起来,让简单工具组合出强大的功能,比如 ps -ef | grep 'nginx' 就能快速找出nginx进程。
2025-07-28 23:41:47
430
原创 一、初识 Linux 与基本命令
玩转Linux命令行,就像探索一座新城市。首先要熟悉它的“地图”,也就是/根目录下/etc(放配置)、/home(住家)这些核心区域。然后掌握几个“生存口令”:用ls看周围,cd去别处,mkdir建新房,cp/mv搬东西,再用cat或tail看文件内容。最后,别忘了随时按Tab键,它能帮你自动补全命令和路径,是提高效率的第一神器。
2025-07-28 20:30:23
447
原创 三、Spark 运行环境部署:全面掌握四种核心模式
部署Spark就像选择不同的道路,从用于学习的Local“院子”,到独立的Standalone“专线”,再到与Hadoop集成的YARN“高速网”,而Windows本地开发则需先搞定特殊的winutils配置才能上路
2025-07-25 13:44:20
21449
163
原创 二、Spark 开发环境搭建 IDEA + Maven 及 WordCount 案例实战
想在自己的电脑上写Spark程序,第一步就是搭好开发环境。这次我会手把手带你在IDEA里完成所有设置:从创建Maven项目、配置好与Spark版本匹配的Scala,到在pom.xml里添加核心依赖。它还专门解决了两个常见“拦路虎”:配置log4j来减少日志刷屏,以及搞定Windows环境下特有的winutils.exe问题。跟着走完,你就能成功跑起一个WordCount,顺利迈出Spark开发的第一步。
2025-07-20 10:00:00
3149
75
原创 一、Spark专栏开篇:它从何而来,为何而生,凭何而强?
Spark可以看作是Hadoop MapReduce的“高速升级版”。它最大的优势是把计算数据都放在内存里,速度飞快,解决了MapReduce频繁读写硬盘的慢问题。它本身也是个全能平台,自带SQL、实时处理等多种功能。现实中它常和Hadoop搭档:Hadoop负责存数据,Spark负责跑计算。
2025-07-18 09:28:29
3159
66
原创 Oracle 视图
可以把Oracle视图看作是给一段复杂查询存的“快捷方式”,让你能像查一张简单的表一样去访问它,省去了每次都写长串代码的麻烦。普通视图只是个逻辑窗口,本身不存数据,主要用来简化操作和控制权限。但如果某个查询实在太慢,想用空间换时间,那就得用“物化视图”。它会真实地存一份数据副本,专门给查询提-速,是性能优化的一大杀手锏。
2025-07-10 10:04:11
1163
38
原创 三、Docker常用命令
把 Docker 玩转,就像一个建筑师,需要掌握两套核心工具:一套用来管理你的“图纸”(镜像),另一套用来管理你用图纸盖好的“房子”(容器)。对于“图纸”,你得会用 pull 下载、images 查看、rmi 删除和 tag 贴标签。对于盖好的“房子”,你得会用 run 建造并运行、ps 查看、stop 暂停、exec 进屋看看,以及 rm 拆除。掌握了这两套核心命令,日常使用 Docker 就游刃有余了。
2025-07-09 21:44:22
17510
42
原创 二、Docker安装部署教程
当你敲下docker run时,背后发生了一系列神奇的操作:从检查本地镜像,到从仓库拉取,再到创建并启动容器。搞懂这个核心流程后,就可以动手在Linux上安装Docker了。关键一步是先添加官方的软件源,然后再安装。为了避免拉取镜像时龟速等待,最后一定要记得配置国内的镜像加速器,这能极大提升你的使用体验。
2025-07-07 20:26:19
10637
46
原创 一、Docker:一场颠覆应用部署与运维的容器革命
Docker的出现,就是为了解决“在我电脑上能跑”这个老大难问题。它像个魔法集装箱,把你的程序和它需要的所有东西(比如库、配置)都打包好,这样无论在哪运行,环境都一模一样。理解它很简单,就三个核心玩意儿:镜像是程序的“安装包”,容器是跑起来的程序,而仓库就是存放和分享这些“安装包”的地方。
2025-07-03 19:36:11
2693
38
原创 Oracle 窗口函数
想在看员工薪水的同时,还能在同一行看到他所在部门的平均薪水吗?或者想给每个部门的产品按销量排名?这就是窗口函数的魔力。它不像GROUP BY会把数据压缩成一行,而是为每一行都进行一次“开窗”计算。通过OVER(PARTITION BY ...),你可以轻松实现分组排名、累计求和、或是与前后行数据对比等高级分析,代码比复杂的自连接和子查询要优雅得多。
2025-07-03 09:58:10
800
18
原创 Oracle 数据塑形:行列转换与集合运算
报表要求的数据格式总是千奇百怪?其实用SQL就能让数据轻松“变形”。想把多行内容(比如各科成绩)合并成一行里的多列,可以用经典的CASE WHEN,或者在11g以上版本里用更简洁的PIVOT。反过来,把宽表拆成多行,也有UNION ALL和更方便的UNPIVOT。学会这些,再配合UNION、INTERSECT等集合运算,数据就能随心所欲地展示了。
2025-07-02 18:24:45
1046
25
原创 Oracle 常用函数
拿到手的数据不总是规规矩矩的?Oracle内置了超多实用函数,可以直接在SQL里“加工”数据。无论是大小写转换、截取字符串,还是日期的加减、数字的四舍五入,都有对应的函数。特别推荐用NVL来优雅地处理空值,以及用CASE语句实现复杂的判断逻辑,能让你的查询既强大又省事。
2025-07-01 20:33:20
2213
54
原创 Oracle 数据库查询:多表查询
想把分散在多个表里的数据拼起来看?核心就靠JOIN(连接)和子查询。可以用INNER JOIN找到两边都匹配的记录,或用OUTER JOIN查看单边也存在的数据。一个非常强大的技巧,是把一个查询结果当成临时表来用,能让复杂的统计分析变得清晰。再结合新版本里简洁的分页语法,跨表取数和展示就得心应手了。
2025-06-25 09:51:30
3437
58
原创 Oracle 数据库查询:单表查询
想知道Oracle是如何一步步处理你的查询请求吗?关键在于理解它背后“看不见的”执行顺序。它会先从FROM和WHERE锁定数据,再用GROUP BY分组,最后才排序。搞懂这个流程,再掌握用ROWNUM实现分页的技巧,就能更自如地从数据库里拿到你想要的数据了。
2025-06-22 19:48:45
3214
51
原创 Oracle 数据库数据操作:精通 INSERT, UPDATE, DELETE
在Oracle里,增加数据用INSERT,修改用UPDATE,删除则用DELETE。进行修改和删除时,建议总是带上WHERE条件来指定范围,这样可以确保操作的准确性
2025-06-18 21:05:10
1730
41
原创 Oracle 数据库对象管理:表空间与表的操作
表空间和表的管理,是 Oracle 数据库日常维护里的基础操作。这篇文章从创建、修改到删除,一步步带你熟悉如何控制数据的“住址”和结构布局,还搭配了实用练习题,帮助你在实战中加深理解,学完就能自己动手建表了!
2025-06-10 21:35:35
5846
13
原创 七、Sqoop Job:简化与自动化数据迁移任务及免密执行
平时用 Sqoop 导入导出时,命令一长就容易出错,特别是增量任务还得记 last-value,很麻烦。其实 Sqoop 有 Job 功能,能把命令“存档”,以后直接 --exec 执行,配合调度工具特别省心。本文手把手讲 Job 创建、管理、免密执行技巧(密码文件、Credential Provider),还带实战例子,搞完你就能写出稳稳当当的自动化 Sqoop 作业了!
2025-06-08 21:46:23
3643
4
原创 六、Sqoop 导出
除了从数据库往 Hadoop 导,Sqoop 也能把 Hadoop 里的数据反向“倒”回数据库,做成 Export。很多场景用得上,比如 ETL 后结果回写,业务系统更新,或者补数据。这篇文章细讲了 Export 的用法,INSERT / UPDATE 模式啥区别,update-key、allowinsert 怎么配,暂存表咋用,配了完整例子,学完导出不用再踩坑!
2025-06-07 19:07:16
6075
18
原创 五、Sqoop 增量导入:精通 Append 与 Lastmodified 模式
在实际业务场景中,数据是不断变化的,怎么用 Sqoop 实现“只拉新增或变化部分”而不是每次全量导入?这一篇就详细讲清楚 Sqoop 增量导入的两种模式(append 和 lastmodified),重点解释 lastmodified 模式下 merge-key 怎么用,配套实战例子和常见坑,讲完你就能搞明白增量同步该怎么配置了。
2025-06-05 21:00:04
7032
6
原创 四、Sqoop 导入表数据子集
在实际数据导入场景中,我们经常只需要数据库中的一部分数据,比如按条件筛选的行、特定的几列。这篇文章详细讲解了如何使用 Sqoop 的 --where、--columns、--query 等方式灵活实现子集导入,配有完整示例和注意事项,助你更精准地控制数据流向 HDFS 或 Hive。
2025-06-04 20:47:42
8693
6
原创 三、Sqoop 全量导入核心命令
在大数据处理过程中,数据库表怎么高效导入到 Hadoop?这一篇我带大家实战讲解 Sqoop 全量导入 的用法,从基础命令到常用参数配置,再到导入到 HDFS、Hive 的各种格式案例,配合实操示例,帮你一步步掌握全量导入技巧。最后还有练习题,供大家动手巩固一下。
2025-06-03 19:00:00
8688
15
原创 二、Sqoop 详细安装部署教程
在大数据开发实战中,Sqoop 是数据库与 Hadoop 生态之间不可或缺的数据传输工具。这篇文章将以 Sqoop 1.4.7 为例,结合官方站点截图,详细讲解 Sqoop 的下载路径、安装步骤、环境配置,以及常见 JDBC 驱动的准备过程,帮你一步步搭建出能正常运行的 Sqoop 环境,并通过 list-databases 命令验证安装是否成功。如果你正打算学习 Sqoop,或者在搭建大数据平台过程中遇到安装配置问题,本文将是非常实用的参考指南。
2025-06-02 11:55:56
10895
29
原创 一、Sqoop历史发展及原理
在大数据系统中,Sqoop 就像是一位干练的“数据搬运工”,帮助我们把 MySQL、Oracle 等数据库里的数据快速、安全地导入到 Hadoop、Hive 或 HDFS 中,反之亦然。这个专栏从基础原理讲起,配合实战案例、参数详解和踩坑提醒,让你逐步掌握 Sqoop 的使用技巧。不管你是初学者,还是正在构建数据管道的工程师,都能在这里找到实用的经验和灵感。
2025-05-30 00:04:22
12613
52
原创 三、zookeeper 常用shell命令
在分布式系统中,ZooKeeper 是幕后“协调者”,而 zkCli.sh 则是你与它对话的窗口。本篇文章带你系统掌握 ZooKeeper Shell 的常用命令,从创建节点、查看状态,到权限控制与顺序节点管理,每一步都配有实用案例和练习题。无论你是刚接触 ZooKeeper,还是在调试集群环境,这份操作手册都会是你上手与复习的好帮手。
2025-05-28 17:17:12
12266
10
原创 二、ZooKeeper 集群部署搭建
ZooKeeper 是分布式系统中不可或缺的“协调者”,而搭建一个稳定的 ZooKeeper 集群,是掌握分布式技术的必经之路。本文手把手带你在三台 Linux 主机上完成 ZooKeeper 3.8.4 的集群搭建,从下载配置到服务验证,每一步都配图详解,真正做到“照着抄也能成功”。适合正在学习大数据、准备上手实战的你。
2025-05-24 20:54:27
14037
42
原创 一、ZooKeeper:分布式系统中的隐形协调大师
在分布式系统中,很多时候出错不是因为“算错了”,而是因为“步子没对齐”。ZooKeeper 就是为了解决这个问题而生的。它不负责运算、不存大数据,却几乎出现在所有大型集群的背后,做着那些低调但关键的“协调”工作。本文从 ZooKeeper 的数据模型、角色机制、一致性保障到高可用实战,带你看清这个“动物园管理员”是如何让整个系统井然有序的。
2025-05-23 22:36:39
14585
12
原创 十五、Hive 窗口函数
在 Hive 做数据分析时,你是否遇到过“求排名”“算累计”“取前后值”这些看似简单却写不出高效 SQL 的场景?本篇文章带你一次性掌握 Hive 窗口函数的用法,从 ROW_NUMBER() 到 LAG()、NTILE() 再到窗口帧 ROWS BETWEEN 的各种花式玩法,全部配有实战示例和练习题。不讲概念空话,讲的是怎么写、哪里用、踩过哪些坑。看完这一篇,你的 Hive SQL 会变得不一样。
2025-05-22 21:43:24
14974
3
原创 十四、Hive 视图 & Lateral View
在大数据开发中,Hive 不仅是批量处理的利器,更拥有强大的数据建模能力。本文系统讲解 Hive 中视图与 Lateral View 的概念、语法、优势及实际用法。你将学会如何借助视图封装复杂查询,如何通过 Lateral View 搭配 explode 函数对 ARRAY 和 MAP 等复杂类型进行结构展开,并结合10道实战练习,逐步掌握如何构建逻辑层、抽象层与“结构重构”能力
2025-05-21 19:04:01
15411
2
原创 十三、Hive 行列转换
在数据处理中,行列转换是数据建模、清洗和可视化的“变形术”。本文以实战视角系统梳理 Hive SQL 中实现行转列与列转行的多种方法,包括 CASE WHEN + 聚合函数、COLLECT_LIST、LATERAL VIEW EXPLODE + MAP/ARRAY、STACK 等。通过经典场景演示如何用最优语法完成数据透视、结构拆分与重构,并配套 10 道进阶练习题及答案,助你全面掌握 Hive 在数据转换中的“十八般武艺”。适合想要提升数据操作技巧的工程师与数据分析师查阅收藏。
2025-05-19 19:09:54
15823
10
原创 MySQL 数据库备份与还原
在数据世界里,意外总比明天先到。为了保障 MySQL 数据库的安全与可恢复性,本文深入讲解了 mysqldump 逻辑备份的核心用法,包括表级、库级、全库备份与还原,重点解析了常用参数(如 --single-transaction、--master-data 等)的真实意义与实战场景。同时,我们还引入了“全量 + 二进制日志”的时间点恢复(PITR)策略,帮助你应对误删、系统故障等突发事件。文章配有详细命令范例与实战练习,助你掌握从日常备份到灾难恢复的全流程,真正做到“未雨绸缪,备而无患”。
2025-05-18 18:58:49
18564
18
原创 十二、Hive 函数
在 Hive 的世界里,数据处理不只是查询和统计,更是一场灵活的“变形术”。无论是字符串提取、日期计算,还是数组展开、数据脱敏,Hive 丰富的内置函数和运算符就像工具箱中的万能钥匙,让你能精准、高效地操控数据。本篇文章带你系统梳理 Hive 常用函数的分类与用法,并配合实际案例、代码演示和练习题,帮助你从“看得懂”到“用得顺”,逐步掌握函数背后的逻辑与技巧。
2025-05-17 20:20:37
17422
12
原创 十一、Hive JOIN 连接查询
在 Hive 的世界里,JOIN 就像是数据间的红线,把原本分散在各自表里的信息串联起来。无论是内连接、外连接,还是 Hive 特有的左半连接,都各有“武功招式”,适用于不同场景。
2025-05-16 21:50:50
17910
8
原创 十、HQL:排序、联合与 CTE 高级查询
Hive 查询不仅能查,还能查得漂亮、高效。我们这次聚焦 HQL 中的高级技巧——从 ORDER BY 到 SORT BY、DISTRIBUTE BY 与 CLUSTER BY,带你理解排序在分布式环境中的执行逻辑;再深入讲解 UNION 与 CTE 等查询组织方式,帮你将复杂 SQL 拆解得更清晰。我还特意写了丰富示例与实战练习,适合正在提升 Hive 查询能力的你阅读、收藏和练习。
2025-05-15 20:56:49
17584
原创 九、HQL DQL七大查询子句
Hive 查询写得清楚,数据分析就能更顺手。我们这次从入门角度出发,带你理清 Hive 中最常用的七个查询子句(FROM、WHERE、GROUP BY、HAVING、SELECT、ORDER BY、LIMIT),结合执行顺序梳理每一步的用法与注意事项。每个子句都有配套案例,还有实战练习题帮你快速上手。如果你刚开始学习 Hive 查询,或希望把基础打得更扎实,这篇内容值得收藏。
2025-05-15 09:41:31
17536
原创 八、HQL DML数据导入与操作
在 Hive 中,写好一条 INSERT,远不止“把数据塞进去”那么简单。本文将用清晰的语法讲解和实用案例,带你一步步掌握 LOAD DATA、INSERT ... SELECT、动态分区、CTAS 等核心用法。从数据导入、表间写入到多表分发、HDFS 导出,覆盖 Hive DML 的关键技能,让你的数据处理更高效、更得心应手。
2025-05-14 17:50:46
18546
原创 七、深入 Hive DDL:管理表、分区与洞察元数据
在日常使用 Hive 的过程中,我们不仅要会建表,更要学会灵活地维护和管理已有的数据结构。从添加字段到修改分区,从查看元数据到删除表或清空数据,掌握这些 DDL 操作和常用的 SHOW 命令,就像掌握了一套管理数据仓库的“万能钥匙”。这次将带你一步步熟悉这些命令的用法和实际应用场景,配合清晰的语法示例与练习题,帮助你更轻松地驾驭 Hive 数据管理的日常工作。
2025-05-13 20:05:11
17195
原创 六、Hive 分桶
在 Hive 的世界里,除了常见的分区,分桶也是一项非常实用的数据优化方式。它能帮助我们将数据按某个字段均匀划分到多个“桶”中,不仅能提升大表连接的效率,还特别适合做数据抽样和精细管理。本文将带你一步步了解分桶表的创建方法、数据加载过程和常见应用场景,配有丰富示例和练习题,帮助你在实战中轻松掌握这项技能。
2025-05-13 17:00:59
17454
2
原创 五、Hive表类型、分区及数据加载
在 Hive 中设计表,绝不仅是“建个结构那么简单”。选对内部表或外部表,决定了数据的归属和生命周期;设计合理的静态/动态分区策略,则直接关系到大数据场景下的查询效率和存储管理成本。本文深入讲解 Hive 表类型与分区机制,配合大量实战代码与练习题,带你从“写对语法”走向“设计合理”,让你的数仓查询快到飞起!
2025-05-12 19:16:04
17801
7
原创 四、Hive DDL表定义、数据类型、SerDe 与分隔符核心
Hive 中的表是数据仓库的核心容器,定义了数据的结构和存储方式。本文系统讲解了 Hive 中创建表的语法与关键参数,包括字段类型、分隔符设置、SerDe 使用等内容,特别通过结构化与复杂数据类型(如 ARRAY、MAP、STRUCT)的案例讲解,让读者理解如何让 Hive 正确“读懂”你的数据。配合常见示例与练习题,帮你打好 Hive 表设计的基础,轻松驾驭文本、JSON 等多格式数据。数据如何入库、如何被解析,一文看懂!
2025-05-11 21:27:51
14746
5
原创 三、Hive DDL数据库操作
Hive 中的数据库(Schema)是构建数据仓库的基础单位。这次我们来了解 Hive 中创建、查看、切换、修改与删除数据库的 DDL 操作语法与用法,涵盖 COMMENT、LOCATION、DBPROPERTIES 等常用参数,辅以丰富示例与练习,助你扎实掌握 Hive 数据库管理核心能力。
2025-05-11 18:11:46
13514
解除网页限制强制复制油猴脚本
2025-04-27
网页视频倍速播放油猴脚本
2025-04-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人