if grid[i][j] == 1:
queue.append((i,j))
#判断如果测试例子中grid中都是1或者都是0,则返回-1,代表没有。
if len(queue) == 0 or len(queue) == n ** 2: return step
#使用队列对上下左右进行判断
while queue:
#这个for是一个多源BFS的一个关键点,表示同时扩散的重要地方!
for i in range(len(queue)):
x, y = queue.pop(0)#出队列
for k , l in d:
#判断周围的海
if check(x + k , y + l , n, n) and grid[x + k][y + l] == 0:
queue.append((x +k,y + l ))
grid[x + k ][ y + l ] = grid[x ][y ] + 1
step += 1#每循环一次就表示陆地对海洋的距离
return step#最后返回距离值
秒杀两题不够爽不要着急我专门为大家准备了更多的习题带给大家呢嘿嘿嘿嘿!!!!
| 题目 |
| :-- |
| 1254. 统计封闭岛屿的数目 |
| 1905. 统计子岛屿 |
| 994. 腐烂的橘子 |
| 太平洋大西洋水流问题 |
给我拿捏上面的习题!!!!
树类型模板
最常见的就是二叉树的层序遍历,我们能通过BFS
算法模板直接套用进而秒杀。
例如:二叉树的层序遍历
题目:
给你二叉树的根节点 root
,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
示例一:
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
思路:
在本题中我们能把每层的节点都放在队列中,当访问每个节点的时候把节点的左右子树在添加到队列中(如果存在左右子树),同理还是访问子节点的子节点放到队列中,同时还需要输出每层的数据。
总所周知树也是图的一种,而我们一般使用多源BFS来访问数据。
代码模板:
Definition for a binary tree node.
class TreeNode:
def init(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def levelOrder(self, root: TreeNode) -> List[List[int]]:
#判断是否存在root
if not root :
return []
#用来统计输出的数据
res = []
#设置一个队列,并把头节点放入队列中
queue = [root]
#开始对每一层的节点进行访问
while queue:
#统计每一层节点的val值
temp = []
#获取每层的节点数
size = len(queue)
#进行一个多源的BFS
for _ in range(size):
#出队列
r = queue.pop(0)
#添加值
temp.append(r.val)
#判断左右子节点是否存在,如果存在则入队
if r.left:
queue.append(r.left)
if r.right:
queue.append(r.right)
#把每层的数据放入res中
res.append(temp)
return res
树的BFS
习题已经给大家准备好了,给我直接秒杀他们!!!
| 题目 |
| — |
| 111. 二叉树的最小深度 |
| 剑指 Offer II 045. 二叉树最底层最左边的值 |
| #107 二叉树的层序遍历 II |
| #429 N 叉树的层序遍历 |
| #103 二叉树的锯齿形层序遍历 |
| |
图论类型模板
众所周知BFS
其实就图的一种搜索方法,而在我们刷题的航向
上经常遇见一些图的BFS
搜索方法,所以今天就给大家带来图的BFS
的秒杀解题模板。话不多说,直接上列题。
例题:310. 最小高度树
题目:
树是一个无向图,其中任何两个顶点只通过一条路径连接。 换句话说,一个任何没有简单环路的连通图都是一棵树。
给你一棵包含
n
个节点的树,标记为0
到n - 1
。给定数字n
和一个有n - 1
条无向边的edges
列表(每一个边都是一对标签),其中edges[i] = [ai, bi]
表示树中节点ai
和bi
之间存在一条无向边。
可选择树中任何一个节点作为根。当选择节点
x
作为根节点时,设结果树的高度为h
。在所有可能的树中,具有最小高度的树(即,min(h)
)被称为 最小高度树 。
请你找到所有的 最小高度树 并按 任意顺序 返回它们的根节点标签列表。
树的 高度 是指根节点和叶子节点之间最长向下路径上边的数量。
示例:
输入:n = 4, edges = [[1,0],[1,2],[1,3]]
输出:[1]
解释:如图所示,当根是标签为 1 的节点时,树的高度是 1 ,这是唯一的最小高度树。
思路:
本题其实就是看谁的子节点多,就让谁来当作根节点。通过上图的示例我们也能看见
1
的根节点是比较多的一个节点,所以如果它作为根节点则就可以使树的长度达到最小。其实我们这个还能把这个树(或者图)看成是一个洋葱
我们从外面一层层的拨开它的皮(节点(入度)为一的
节点)。直到到最后一个能获取最后一个(或者多个节点)然后放到数组中并返回该数组中的所有节点。
我们可以通过下面画的一个简略图能大概的分析这个剥洋葱!(画的有点丑,大家别嫌弃嘿嘿嘿嘿)
通过上图能看到最中心的两个节点是最后一层拨开的节点,我们把它放在数组里面返回即可。
代码:
class Solution:
def findMinHeightTrees(self, n: int, edges: List[List[int]]) -> List[int]:
#判断这个数是否小于两个节,小于就返回其有多少个就返回多少个。
if len(edges) < 2:
return [i for i in range(n)]
#统计1到n-1的每一个节点。
tree = [[] for i in range(n)]
#用for循环把每个相连的节点放入里面,构建出我们想要的图。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算
发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算