数据仓库通常采用分层的体系架构设计,作为支撑企业决策分析需求的数据基础设施。典型的数据仓库体系架构由以下三个核心层次组成:
源数据层(Source Layer)
这是数据仓库的数据来源,包括组织内部的各种运营系统,如ERP、CRM、SCM等,以及外部数据源如互联网、社交媒体等。这些系统通常是面向不同应用构建的在线事务处理(OLTP)数据库。源数据层为数据仓库提供了初始的、未经处理的原始数据。
数据集成层(Integration Layer)
这是数据仓库架构的核心环节,也称为ETL(提取-转换-加载)层。它负责从各个源数据系统抽取所需数据,并通过复杂的转换、清理、校验等ETL过程,将这些数据加载到集中的数据存储区(数据仓库或数据集市)中。
数据集成层一般由独立服务器和专门的ETL工具软件来完成。此外,该层还包括元数据存储库,用于管理和维护整个ETL过程的元数据。
数据应用层(Access Layer)
这是数据仓库与最终用户及应用程序交互的层次。它允许用户查询、分析和可视化存储在数据仓库中的数据,为各类商业智能应用提供支持。
数据应用层通常包括以下几个主要组成部分:
- OLAP(在线分析处理)服务器:支持多维度数据分析和挖掘
- 数据挖掘工具:用于预测分析、关联规则挖掘等高级分析
- 查询和报表工具:为分析人员生成各类报表和查询
- 数据可视化工具:通过图表、仪表板等直观展现数据
- API 接口:通过API 接口可以对外提供服务
数据仓库的分层
数据仓库的分层是一种将数据仓库中的数据按照不同的粒度和主题进行组织和管理的方法。它可以将数据仓库中的数据划分为不同的层次,每一层都具有特定的功能和特点。
数据仓库分层的目的主要有以下几个:
- 提