如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
// guest
{
“file”: “data/breast_eval.csv”,
“head”: 1,
“partition”: 16,
“work_mode”: 0,
“table_name”: “homo_breast_2_eval”,
“namespace”: “homo_guest_breast_eval”
}
借助FATE,我们可以使用组件的方式来构建联邦学习,而不需要用户从新开始编码,FATE构建联邦学习Pipeline是通过自定义dsl和conf两个配置文件来实现:
dsl文件:用来描述任务模块,将任务模块以有向无环图(DAG)的形式组合在一起。
conf文件:设置各个组件的参数,比如输入模块的数据表名;算法模块的学习率、batch大小、迭代次数等。
我们本实验使用的是模型:逻辑回归
进入examples/dsl/v1/homo_logistic_regression文件夹中:
使用test_homolr_train_job_dsl.json、test_homolr_train_job_conf.json两个文件来辅助构建横向联邦学习模型
3.2.1 DSL配置文件
为了让任务模型的构建更加灵活,目前 FATE 使用了一套自定的领域特定语言 (DSL) 来描述任务。在 DSL 中,各种任务模块(例如数据读写 data_io,特征工程 feature-engineering, 回归 regression,分类 classification)可以通向一个有向无环图 (DAG) 组织起来。通过各种方式,用户可以根据自身的需要,灵活地组合各种算法模块。
DSL 的配置文件采用 json 格式,实际上,整个配置文件就是一个 json 对象 (dict)。在这个 dict 的第一级是 “components”,用来表示这个任务将会使用到的各个模块。用户需要使用模块名加数字 _num 作为对应模块的 key,例如 dataio_0,并且数字应从 0 开始计数。
具体的参数见官方文档连接(上面)
test_homolr_train_job_dsl.json:
定义了四个模块已经构成了基本的联邦学习流水线(feature_scale_0为1.6.0新增),可直接使用(复制一份)
{
“components” : {
// 数据IO组件,用于将本地数据转为DTable
“dataio_0”: {
“module”: “DataIO”,