Python图像纹理分割

                  test_index += 1
                index += 1

    return train_data, test_data, train_label, test_label
#纹理检测
def texture\_detect(self):
    train_data, test_data, train_label, test_label = self.loadPicture()
    n_point = self.n_point
    radius = self.radius
    train_hist = np.zeros((10, 256))
    test_hist = np.zeros((8, 256))
    #LBP特征提取
    for i in np.arange(10):
        # 使用LBP方法提取图像的纹理特征.
        lbp=skft.local_binary_pattern(train_data[i], n_point, radius, 'default')
        # 统计图像的直方图
        max_bins = int(lbp.max() + 1)
        # hist size:256
        train_hist[i], _ = np.histogram(lbp, normed=True, bins=max_bins, range=(0, max_bins))

    for i in np.arange(8):
        lbp = skft.local_binary_pattern(test_data[i], n_point, radius, 'default')
        max_bins = int(lbp.max() + 1)
        # hist size:256
        test_hist[i], _ = np.histogram(lbp, normed=True, bins=max_bins, range=(0, max_bins))

    return train_hist, test_hist
#训练分类器 SVM支持向量机分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值