sklearn实现逻辑回归_以python为工具【Python机器学习系列(十)】_python逻辑回归模型from sklearn

本文介绍了使用Python实现逻辑回归模型,包括线性模型的训练、决策边界绘制,以及非线性逻辑回归通过多项式特征转换的应用。还以乳腺癌数据集为例,详细展示了如何计算和解读准确率、精确率和召回率等指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


第三步,训练模型

logistic = LogisticRegression()
logistic.fit(x_data, y_data)

# 截距
print(logistic.intercept_)
# 系数:theta1 theta2
print(logistic.coef_)
# 预测
pred = logistic.predict(x_data)
# 输出评分
score = logistic.score(x_data, y_data)
print(score)

输出结果如下图所示:
        在这里插入图片描述


绘制出带有决策边界的散点图:

# 绘制散点
plot_logi()
# 绘制决策边界
x_test = np.array([[-4], [3]])
y_test = -(x_test\*logistic.coef_[0, 0]+logistic.intercept_)/logistic.coef_[0, 1]
plt.plot(x_test, y_test)
plt.show()

在这里插入图片描述


2.非线性逻辑回归

python实现非线性逻辑回归,首先使用make_gaussian_quantiles获取一组高斯分布的数据集,代码及数据分布如下:

import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn.preprocessing import PolynomialF
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值