第三步,训练模型
logistic = LogisticRegression()
logistic.fit(x_data, y_data)
# 截距
print(logistic.intercept_)
# 系数:theta1 theta2
print(logistic.coef_)
# 预测
pred = logistic.predict(x_data)
# 输出评分
score = logistic.score(x_data, y_data)
print(score)
输出结果如下图所示:
绘制出带有决策边界的散点图:
# 绘制散点
plot_logi()
# 绘制决策边界
x_test = np.array([[-4], [3]])
y_test = -(x_test\*logistic.coef_[0, 0]+logistic.intercept_)/logistic.coef_[0, 1]
plt.plot(x_test, y_test)
plt.show()
2.非线性逻辑回归
python实现非线性逻辑回归,首先使用make_gaussian_quantiles获取一组高斯分布的数据集,代码及数据分布如下:
import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn.preprocessing import PolynomialF