《纽约时报》6月27日载文——AI 也许会抢走你的工作,但也可能带来 22 种新职业。AI会抢走我们的工作吗?答案可能是“会”,但这并不意味着人类的角色就此终结。在纽约时报的这篇文章中,作者Robert Capps从自身的写作经历谈起:他尝试让ChatGPT代写这篇文章,AI写得迅速且有趣,但问题在于——里面的专家引用、数据分析和语言判断,几乎全是虚构的。
换句话说,它写得像样,却不真实。而真实和责任,正是人类在AI时代的价值所在。
这便引出了文章的主题:AI会改变我们所知的就业世界,但与此同时,也正在为人类创造新的职业机会。这些新兴角色大多分布在三个领域:信任(Trust)、整合(Integration)和品味(Taste)。
1.人类的信任不可替代
在AI做出各种决策的今天,我们需要有人来问一句:“这对吗?”于是,“AI审计员”的职业浮出水面。他们的职责是深入理解AI的判断过程,为其提供可验证的解释,特别是在法律、财务等高风险行业。同样,“AI翻译员”将帮助管理者理解技术语言,把深奥算法转化为商业决策语言。
这种“信任”领域还延伸出更系统化的角色,如“AI伦理顾问”、“合规审查师”、“信任主管”等。他们确保AI不会突破社会伦理边界,更重要的是,当AI出错时,有人能为此承担责任——人类,依然是“问责链”的终点。
这类岗位强调的是:在算法输出愈加复杂且具决定性的背景下,必须有人类介入来解释、验证、承担责任,如:
-
AI 审计员(AI Auditor)
-
AI 翻译员(AI Translator)
-
信任验证员 / 信任总监(Trust Authenticator / Trust Director)
-
AI 伦理师(AI Ethicist)
-
合法性担保人(Legal Guarantor)
-
一致性协调员(Consistency Coordinator)
-
升级处理官(Escalation Officer)
-
事实核查员 / 合规检查员(Fact Checker / Compliance Officer)
2.我们需要“人机翻译官”
企业未来也会雇佣“AI训练师”,把企业内部的数据整理并喂给AI,使其能产出准确而有效的结果。而另一个新角色也因此诞生:“AI人格设计师”。当你的AI助手语气太热情、太机械,甚至太阴阳怪气时,它的“性格”就是品牌的一部分——需要人为设计、调教和维护。
这一类岗位通常需要技术与业务的双重背景,既要懂AI,也要懂组织目标、流程与人的行为逻辑,如:
-
AI 集成专员(AI Integrator)
-
AI 管道工(AI Plumber)——负责排查 AI 系统中的异常和错误。
-
AI 评估师(AI Assessor)——对模型性能、幻觉率进行评估。
-
AI 训练师(AI Trainer)——基于公司内部数据训练企业定制模型。
-
AI 人格设计师(AI Personality Director)——定义企业 AI 的语调与互动风格。
-
药物依从性优化师(Drug Compliance Optimizer)
-
AI/人类评估专家(AI/Human Evaluation Specialist)
3.真正决定价值的,是“品味”
在AI时代,“品味”成为人类不可取代的核心竞争力。虽然人工智能可以生成图像、文本、视频和音乐,但它无法真正理解文化背景、情感细腻度与审美趋势背后的深层意义。
这些角色强调在内容、设计与美感上的人类判断力,如:
-
故事设计师(Story Designer)
-
产品设计师(Product Designer)
-
差异化设计师(Differentiation Designer)
-
个性塑造师等创意方向角色
4.未来不是“没有工作”
而是“你配不上AI时代的工作”
坏消息是:AI确实在加速取代简单重复型岗位;
好消息是:AI带来的新岗位也在爆炸式增长!
LinkedIn数据显示,过去一年,AI相关岗位增长了30%!拥有 Copilot / ChatGPT / 数据技能 的候选人,竞争力显著高于普通毕业生!
企业不再看你“干多少活”,而是看你如何驾驭AI工具、解决问题。
5.传统行业从业者该怎么办?
学会“协同AI”而不是“被替代”
不需要精通AI算法,只要你掌握:
-
如何用 ChatGPT 提高工作效率
-
如何用 Python/SQL 分析数据
-
如何用 AI 工具简化重复流程
你就已经比90%的“只刷题不进化”的候选人领先!
提前积累“实战型经验”
即使没有实习机会,也可以:
-
参加 AI 项目训练营
-
参与虚拟项目、线上协作
-
模拟商业场景解决方案
6.如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓