生成式人工智能 (AI) 在组织中积极探索其潜在应用的情况下获得了显著的发展势头。随着成功的概念验证转向生产环境,组织越来越需要企业级的可扩展解决方案。然而,为了解锁这些AI驱动解决方案的长期成功和可行性,关键是要与经过实践检验的架构原则保持一致。
Amazon Web Services Well-Architected Framework提供了在云中设计和运营可靠、安全、高效和经济实用的系统的最佳实践和指南。将生成式AI应用程序与该框架保持一致非常重要,原因有以下几点:提供可扩展性、维护安全性和隐私性、实现可靠性、优化成本和简化运营。对于寻求利用生成式AI的力量并推动创新的组织来说,采用这些原则至关重要。
本文探讨了Amazon Bedrock的新企业级功能以及它们与Amazon Web Services Well-Architected Framework的契合度。通过Amazon Bedrock的知识库,您可以使用检索增强的生成(RAG)技术快速构建应用程序,用于问答、上下文聊天机器人和个性化搜索等用例。
下面是我们将要介绍的一些功能:
- Amazon CloudFormation支持
- 用于Amazon OpenSearch Serverless的私有网络策略
- 多个S3存储桶作为数据源
- 服务配额支持
- 混合搜索、元数据过滤、RetreiveAndGenerate API的自定义提示以及最大检索次数。
Amazon Web Services Well-Architected设计原则
使用Amazon Bedrock的知识库构建的基于RAG的应用程序可以从遵循Amazon Web Services Well-Architected Framework中获得很大裨益。该框架包含六个支柱,可帮助组织确保其应用程序安全、高性能、有弹性、高效、经济、可持续:
- 运营卓越 – Well-Architected原则可以简化运营、自动化流程,并实现对生成式AI应用程序性能的持续监控和改进。
- 安全性 – 实施强有力的访问控制、加密和监控措施,可以保护组织知识库中使用的敏感数据,防止滥用生成式AI。
- 可靠性 – Well-Architected原则指导了设计出有弹性和容错能力的系统,从而为用户提供一致的价值交付。
- 性能优化 – 选择合适的资源、实施缓存策略以及主动监控性能指标,可确保应用程序提供快速和准确的响应,从而实现最佳性能和增强用户体验。
- 成本优化 – Well-Architected指南可以帮助优化资源使用、采用节省成本的服务以及监控费用支出,从而确保了生成式AI项目的长期可行性。
- 可持续性 – Well-Architected原则倡导高效利用资源并最小化碳足迹,以解决日益增长的生成式AI使用对环境的影响。
通过与Well-Architected Framework保持一致,组织可以有效构建和管理使用Amaz