Stable Diffusion 安装与部署

Stable Diffusion 是一款开源的文生图人工智能模型,由 Stability AI 公司开发。它能够根据用户输入的文本生成高质量的图像,被广泛应用于创意设计、艺术创作等领域。

今天,我们就一起来实操 Stable Diffusion 的安装和部署过程。想要Stable diffusion安装包的小伙伴可以在文末扫码,我给大家免费安排!

环境准备

Stable Diffusion 的运行需要以下环境:

  • NVIDIA GPU (推荐 RTX 3080 及以上)

  • CUDA 11.3 或更高版本

  • Python 3.9 或更高版本

  • 至少 10GB 显存

确保您的环境满足这些要求。

安装步骤

  1. 安装 Python 3.9 或更高版本。

  2. 安装 CUDA 11.3 或更高版本。

  3. 使用 pip 安装所需的 Python 依赖包: pip install -r requirements.txt`

  4. 下载 Stable Diffusion 模型权重文件:
    wget https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned.ckpt`

  5. 编写一个 Python 脚本来运行 Stable Diffusion:

    from diffusers import StableDiffusionPipelineimport torch# 加载模型pipe = StableDiffusionPipeline.from_pretrained(“runwayml/stable-diffusion-v1-5”, revision=“fp16”, torch_dtype=torch.float16)pipe = pipe.to(“cuda”)# 生成图像image = pipe(“A photo of a happy person.”)image.save(“output.png”)

  6. 运行脚本即可生成图像。

部署方式

Stable Diffusion 可以部署在多种环境中,包括:

  1. 本地部署:将 Stable Diffusion 安装在您自己的机器上,这种方式适合个人使用或小规模应用。

  2. 云端部署:将 Stable Diffusion 部署在云服务器上,这种方式适合大规模应用或需要高性能的场景。

  3. Web 应用部署:将 Stable Diffusion 集成到 Web 应用中,提供在线图像生成服务。

根据您的具体需求,选择合适的部署方式即可。

实操演示

接下来,让我们一起来实操 Stable Diffusion 的图像生成过程。

我们将使用上述编写的 Python 脚本,输入文本"A photo of a happy person."来生成图像。

运行脚本后,您将在当前目录下看到一个名为 “output.png” 的图像文件,这就是 Stable Diffusion 生成的图像。

结语

通过本文,您已经了解了 Stable Diffusion 的安装和部署过程,并且亲自实操了图像生成的过程。如果您有任何问题或需求,文末扫码咨询我~

想要SD安装包和相关插件的小伙伴扫码可免费领取哦~

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

在这里插入图片描述

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

在这里插入图片描述

若有侵权,请联系删除

### 本地部署 Stable Diffusion 的完整指南 在本地服务器上部署安装 **Stable Diffusion** 模型需要遵循一系列步骤,包括环境准备、依赖安装、模型下载以及最终的运行配置。以下是详细的部署安装流程: --- #### 1. 环境准备 在开始之前,请确保您的本地服务器满足以下基本要求: - **操作系统**: 推荐使用 **Windows 10/11** 或 **Linux (Ubuntu 20.04+)**。 - **GPU**: 使用 **NVIDIA GPU** 可以显著提升推理速度,推荐至少 **8GB 显存**。 - **CUDA 和 cuDNN**: 如果使用 NVIDIA GPU,需安装显卡驱动兼容的 **CUDA Toolkit** 和 **cuDNN 库**[^3]。 - **Python**: 安装 **Python 3.10.x**(某些版本可能不兼容)。 - **Git**: 用于从 GitHub 获取源代码,必须安装 Git 工具[^1]。 --- #### 2. 下载 Stable Diffusion 源码 打开终端(Windows 上为命令提示符或 PowerShell),执行以下命令克隆官方仓库: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui ``` 该仓库包含了完整的 Web UI 接口和核心模型加载器。 --- #### 3. 安装依赖项 运行启动脚本后,系统会自动安装所需的 Python 包和依赖项: ```bash # Windows 用户 .\webui-user.bat # Linux 用户 ./webui.sh ``` 如果出现如下提示信息,则表示初始化成功完成: ``` To create a public link, set `share=True` in `launch()`. ``` [^5] --- #### 4. 下载 Stable Diffusion 模型 将预训练模型文件(通常是 `.ckpt` 或 `.safetensors` 格式)放置于 `models/Stable-diffusion/` 目录下。可以从以下渠道获取模型: - [Hugging Face](https://huggingface.co/models?search=stable-diffusion) - [Civitai](https://civitai.com/)(社区贡献的高质量模型) 例如,下载 **Stable Diffusion 3.5** 模型后,将其放入对应目录即可在 Web UI 中选择使用[^2]。 --- #### 5. 启动 Web UI 并访问 运行完成后,浏览器会自动打开 Stable Diffusion 的 Web 界面,默认地址为: ``` http://127.0.0.1:7860/ ``` 您可以在此界面中进行文生图、图生图等操作,并通过插件扩展功能[^4]。 --- #### 6. 公网访问设置 若希望从外部网络访问本地部署Stable Diffusion 实例,可以在启动时设置 `share=True` 参数: ```python from webui import launch launch(share=True) ``` 这将生成一个临时公网链接,便于远程测试或演示。 如需固定公网访问地址,可使用内网穿透工具(如 **ngrok** 或 **frp**)进行配置[^2]。 --- #### 7. 性能优化建议 - **使用 FP16 模式**:在 Web UI 设置中启用 `Use mixed precision (FP16)` 可减少内存占用并提高推理速度。 - **开启 xFormers 加速**:支持的 GPU 可在启动参数中添加 `--xformers` 以加速注意力计算。 - **调整批处理大小**:根据显存容量合理设置 batch size,避免 OOM 错误。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值