1. ⼆叉搜索树的概念
⼆叉搜索树⼜称⼆叉排序树,它或者是⼀棵空树,或者是具有以下性质的⼆叉树:
• 若它的左⼦树不为空,则左⼦树上所有结点的值都⼩于等于根结点的值
• 若它的右⼦树不为空,则右⼦树上所有结点的值都⼤于等于根结点的值
• 它的左右⼦树也分别为⼆叉搜索树
• ⼆叉搜索树中可以⽀持插⼊相等的值,也可以不⽀持插⼊相等的值,具体看使⽤场景定义,后续我们学习map/set/multimap/multiset系列容器底层就是⼆叉搜索树,其中map/set不⽀持插⼊相等
值,multimap/multiset⽀持插⼊相等值。
2. ⼆叉搜索树的性能分析
最优情况下,⼆叉搜索树为完全⼆叉树(或者接近完全⼆叉树),其⾼度为:log N2
最差情况下,⼆叉搜索树退化为单⽀树(或者类似单⽀),其⾼度为:N
所以综合⽽⾔⼆叉搜索树增删查改时间复杂度为:O(N)
那么这样的效率显然是⽆法满⾜我们需求的,我们后续课程需要继续讲解⼆叉搜索树的变形,平衡⼆叉搜索树AVL树和红黑树,才能适⽤于我们在内存中存储和搜索数据。
另外需要说明的是,⼆分查找也可以实现级别的查找效率,但是⼆分查找有两⼤缺陷:O(log N)2
1. 需要存储在⽀持下标随机访问的结构中,并且有序。
2. 插⼊和删除数据效率很低,因为存储在下标随机访问的结构中,插⼊和删除数据⼀般需要挪动数
据。这里也就体现出了平衡⼆叉搜索树的价值。
3. ⼆叉搜索树的插⼊
插⼊的具体过程如下:
1. 树为空,则直接新增结点,赋值给root指针
2. 树不空,按⼆叉搜索树性质,插⼊值⽐当前结点⼤往右⾛,插⼊值⽐当前结点⼩往左⾛,找到空位置,插⼊新结点。
3. 如果⽀持插⼊相等的值,插⼊值跟当前结点相等的值可以往右⾛,也可以往左⾛,找到空位置,插入新结点。(要注意的是要保持逻辑⼀致性,插⼊相等的值不要⼀会往右⾛,⼀会往左⾛)
4. ⼆叉搜索树的查找
1. 从根开始⽐较,查找x,x⽐根的值⼤则往右边⾛查找,x⽐根值⼩则往左边⾛查找。
2. 最多查找⾼度次,⾛到到空,还没找到,这个值不存在。
3. 如果不⽀持插⼊相等的值,找到x即可返回
4. 如果⽀持插⼊相等的值,意味着有多个x存在,⼀般要求查找中序的第⼀个x。如下图,查找3,要找到1的右孩⼦的那个3返回
二叉搜索树的代码实现
#include<iostream>
using namespace std;
namespace hg
{
template<class K>
struct BSTNode
{
BSTNode(const K& Key)
:_key(Key)
, _left(nullptr)
, _right(nullptr)
{}
K _key;
BSTNode<K>* _left;
BSTNode<K>* _right;
};
template<class K>
class BSTree
{
public:
typedef BSTNode<K> Node;
bool Insert(const K& Key)
{
if (_root == nullptr)
{
_root = new Node(Key);
return true;
}
Node* cur = _root;
Node* parent = _root;
while (cur)
{
if (Key < cur->_key)
{
parent = cur;
cur = cur->_left;
}
else if (Key > cur->_key)
{
parent = cur;
cur = cur->_right;
}
else
return false;
}
if (Key < parent->_key)
{
Node* node = new BSTNode<K>(Key);
parent->_left = node;
return true;
}
else
{
Node* node = new BSTNode<K>(Key);
parent->_right = node;
return true;
}
}
bool Find(const K& Key)
{
Node* cur = _root;
while (cur)
{
if (Key < cur->_key)
{
cur = cur->_left;
}
else if (Key > cur->_key)
{
cur = cur->_right;
}
else
return true;
}
return false;
}
bool Erase(const K& Key)
{
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (Key < cur->_key)
{
parent = cur;
cur = cur->_left;
}
else if (Key > cur->_key)
{
parent = cur;
cur = cur->_right;
}
else
{
if (cur->_left == nullptr && cur->_right == nullptr)
{
if (parent == nullptr)
{
_root = nullptr;
return true;
}
if (cur == parent->_left)
parent->_left = nullptr;
else
parent->_right = nullptr;
delete cur;
cur = nullptr;
return true;
}
else if (cur->_left != nullptr && cur->_right == nullptr)
{
if (parent == nullptr)
{
_root = cur->_left;
return true;
}
if (cur == parent->_left)
parent->_left = cur->_left;
else
parent->_right = cur->_left;
delete cur;
cur = nullptr;
return true;
}
else if (cur->_left == nullptr && cur->_right != nullptr)
{
if (parent == nullptr)
{
_root = cur->_right;
return true;
}
if (cur == parent->_left)
parent->_left = cur->_right;
else
parent->_right = cur->_right;
delete cur;
cur = nullptr;
return true;
}
else if (cur->_left != nullptr && cur->_right != nullptr)
{
Node* replace = cur->_left;
Node* replaceparent = cur;
while (replace->_right)
{
replaceparent = replace;
replace = replace->_right;
}
cur->_key = replace->_key;
if(replace == replaceparent->_left)
replaceparent->_left = replace->_left;
else
replaceparent->_right = replace->_left;
delete replace;
replace = nullptr;
return true;
}
}
}
return false;
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
private:
void _InOrder(Node* root)
{
if (root == nullptr)
{
return;
}
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
Node* _root = nullptr;
};
}
7.1 key搜索场景:
只有key作为关键码,结构中只需要存储key即可,关键码即为需要搜索到的值,搜索场景只需要判断key在不在。key的搜索场景实现的⼆叉树搜索树⽀持增删查,但是不⽀持修改,修改key破坏搜索树结构了。
场景1:⼩区⽆⼈值守⻋库,⼩区⻋库买了⻋位的业主⻋才能进⼩区,那么物业会把买了⻋位的业主的⻋牌号录⼊后台系统,⻋辆进⼊时扫描⻋牌在不在系统中,在则抬杆,不在则提⽰⾮本⼩区⻋辆,⽆法进⼊。
场景2:检查⼀篇英⽂⽂章单词拼写是否正确,将词库中所有单词放⼊⼆叉搜索树,读取⽂章中的单词,查找是否在⼆叉搜索树中,不在则波浪线标红提示。
7.2 key/value搜索场景:
每⼀个关键码key,都有与之对应的值value,value可以任意类型对象。树的结构中(结点)除了需要存储key还要存储对应的value,增/删/查还是以key为关键字⾛⼆叉搜索树的规则进⾏⽐较,可以快速查找到key对应的value。key/value的搜索场景实现的⼆叉树搜索树⽀持修改,但是不⽀持修改key,修改key破坏搜索树性质了,可以修改value。
场景1:简单中英互译字典,树的结构中(结点)存储key(英⽂)和vlaue(中⽂),搜索时输⼊英⽂,则同时查找到了英⽂对应的中⽂。
场景2:商场⽆⼈值守⻋库,⼊⼝进场时扫描⻋牌,记录⻋牌和⼊场时间,出⼝离场时,扫描⻋牌,查找⼊场时间,⽤当前时间-⼊场时间计算出停⻋时⻓,计算出停⻋费⽤,缴费后抬杆,⻋辆离场。
场景3:统计⼀篇⽂章中单词出现的次数,读取⼀个单词,查找单词是否存在,不存在这个说明第⼀次出现,(单词,1),单词存在,则++单词对应的次数。
#include<iostream>
using namespace std;
namespace KeyValue
{
template<class K, class V>
struct BSTNode
{
BSTNode(const K& Key,const V& Value)
:_key(Key)
,_value(Value)
, _left(nullptr)
, _right(nullptr)
{}
K _key;
V _value;
BSTNode<K,V>* _left;
BSTNode<K,V>* _right;
};
template<class K, class V>
class BSTree
{
typedef BSTNode<K, V> Node;
public:
BSTree() = default;
BSTree(const BSTree<K, V>& t)
{
_root = _copy(t._root);
}
//赋值运算符重载按值传递
BSTree<K, V> operator=(BSTree<K, V> t)
{
swap(_root, t._root);
return *this;
}
~BSTree()
{
_destory(_root);
}
bool Insert(const K& key, const V& value)
{
if (_root == nullptr)
{
_root = new Node(key, value);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_key == key)
return false;
else if (key < cur->_key)
{
parent = cur;
cur = cur->_left;
}
else
{
parent = cur;
cur = cur->_right;
}
}
if (key < parent->_key)
{
Node* node = new Node(key,value);
parent->_left = node;
return true;
}
else
{
Node* node = new Node(key,value);
parent->_right = node;
return true;
}
}
Node* Find(const K& Key)
{
Node* cur = _root;
while (cur)
{
if (Key < cur->_key)
{
cur = cur->_left;
}
else if (Key > cur->_key)
{
cur = cur->_right;
}
else
return cur;
}
return nullptr;
}
bool Erase(const K& Key)
{
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (Key < cur->_key)
{
parent = cur;
cur = cur->_left;
}
else if (Key > cur->_key)
{
parent = cur;
cur = cur->_right;
}
else
{
if (cur->_left == nullptr && cur->_right == nullptr)
{
if (parent == nullptr)
{
_root = nullptr;
return true;
}
if (cur == parent->_left)
parent->_left = nullptr;
else
parent->_right = nullptr;
delete cur;
cur = nullptr;
return true;
}
else if (cur->_left != nullptr && cur->_right == nullptr)
{
if (parent == nullptr)
{
_root = cur->_left;
return true;
}
if (cur == parent->_left)
parent->_left = cur->_left;
else
parent->_right = cur->_left;
delete cur;
cur = nullptr;
return true;
}
else if (cur->_left == nullptr && cur->_right != nullptr)
{
if (parent == nullptr)
{
_root = cur->_right;
return true;
}
if (cur == parent->_left)
parent->_left = cur->_right;
else
parent->_right = cur->_right;
delete cur;
cur = nullptr;
return true;
}
else if (cur->_left != nullptr && cur->_right != nullptr)
{
Node* replace = cur->_left;
Node* replaceparent = cur;
while (replace->_right)
{
replaceparent = replace;
replace = replace->_right;
}
cur->_key = replace->_key;
if (replace == replaceparent->_left)
replaceparent->_left = replace->_left;
else
replaceparent->_right = replace->_left;
delete replace;
replace = nullptr;
return true;
}
}
}
return false;
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
private:
void _InOrder(Node* root)
{
if (root == nullptr)
{
return;
}
_InOrder(root->_left);
cout << root->_key << ":"<<root->_value<<" ";
_InOrder(root->_right);
}
Node* _copy(Node* root)
{
if (root == nullptr)
return nullptr;
Node* node = new Node(root->_key, root->_value);
node->_left = _copy(root->_left);
node->_right = _copy(root->_right);
return node;
}
void _destory(Node* root)
{
if (root == nullptr)
return;
_destory(root->_left);
_destory(root->_right);
delete root;
root = nullptr;
}
Node* _root = nullptr;
};
}