案例
1.从给定的 stu.csv 文件中 导入学生成绩数据
数据的格式:
姓名 数学 英语 科学
xx xxx
2.完成以下操作:
打印前2行数据
查看所有列的数据类型和缺失值情况
计算每个学生的总成绩,并添加到DataFrame 中
3.将处理后的数据保存到新的 stu_update.csv 文件中
代码:
# 引入 pandas
import pandas as pd
# 导入 CSV
df = pd.read_csv('stu.csv',sep = ',')
print(df)
# 打印前两行数据
print("前两行数据为:\n",df.head(2))
# 查看所有列的数据类型
print("数据类型为:\n",df.dtypes)
# 查看缺失值
print("缺失值为(1为缺失,0为不缺失):\n",df.isnull().sum())
# 计算每个学生的总成绩
stu_sum = df[['数学','英语','科学']].sum(axis = 1)
print("每个学生总成绩:\n",stu_sum)
# 将总成绩添加到DataFrame中
df['总成绩'] = stu_sum
print(df)
# 导出新的stu
df.to_csv('stu_update.csv',sep = ',',index = False)
print("导出成功")
结果:
姓名 数学 英语 科学
0 张三 85 78 92
1 李四 90 88 84
2 王五 76 95 89
前两行数据为:
姓名 数学 英语 科学
0 张三 85 78 92
1 李四 90 88 84
数据类型为:
姓名 object
数学 int64
英语 int64
科学 int64
dtype: object
缺失值为(1为缺失,0为不缺失):
姓名 0
数学 0
英语 0
科学 0
dtype: int64
每个学生总成绩:
0 255
1 262
2 260
dtype: int64
姓名 数学 英语 科学 总成绩
0 张三 85 78 92 255
1 李四 90 88 84 262
2 王五 76 95 89 260
导出成功