搞定大模型!小白入门必读:一文彻底搞懂大模型到底是什么,从零开始学AI!

你是否也被类似这样的场景震撼过:

输入一句“写一封深情告白的情书”,30秒后一篇细腻动人的文字跃然屏上。

随手拍张模糊草药照片,AI不仅能清晰识别,还能说出药性、禁忌甚至偏方。

用日常大白话描述需求:“做个帮我自动整理邮件、总结重点的小工具”,AI直接生成可运行代码。

这些神奇能力背后站着的巨人,正是今天的主角——大模型!

1、大模型,究竟是什么?

它本质上是一个超大号的“智能大脑”。想象一下,它吸收了整个互联网上海量的文字、图片、代码、知识… 通过极其复杂的计算(涉及数千亿甚至数万亿个参数,这些参数可以简单理解为人类大脑中神经元的数量级),最终学会理解人类语言、识别万物、甚至创造内容。
请添加图片描述

2、大模型的定义

大模型是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至上万亿个参数。

大模型具有参数量大、训练数据大、计算资源大等特点,拥有解决通用任务、遵循人类指令、进行复杂推理等能力。其设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。

大模型 vs.小模型:核心区别

维度大模型小模型
参数规模十亿到万亿级(如GPT-3:175B)百万到十亿级(如BERT±base:110M)
训练数据海量数据(TB级文本、图像等)较小规模(GB级)
计算资源需要分布式GPU/TPU集群训练耗时数周至数月单卡或少量GPU即可训练耗时短
应用场景通用任务(文本生成、复杂推理、多模态交互)专用任务(分类、实体识别、轻量级部署)
部署成本高昂(需云端算力支持,推理延迟高)低成本(可嵌入手机、IoT设备)
能力特点涌现能力(如零样本学习、上下文理解)依赖任务微调,泛化能力有限

3、大模型的发展历史

在这里插入图片描述

大模型起源于语言模型。

萌芽期(1950-2005):以 CNN 为代表的传统神经网络模型阶段。

探索沉淀期(2006-2019):以 Transformer 为代表的全新神经网络模型阶段。

迅猛发展期(2020-至今):以 GPT 为代表的预训练大模型阶段。

4、大模型的特点

参数规模超大,参数量从十亿(B)到万亿(T)级别,例如GPT-3(175B)、PaLM-2(340B)。

训练数据海量,通常使用TB级文本、图像等多模态数据(如GPT-3训练数据约45TB)。覆盖多语言、多领域(网页、书籍、代码等),降低模型对特定任务的过拟合风险。

计算资源密集,训练成本需数千张GPU/TPU并行训练数周,如GPT-3训练成本约460万美元。单次训练碳排放可达数百吨(如Bloom模型训练排放25吨CO₂)。

通用任务泛化,无需微调即可完成新任务(如GPT-4直接生成代码)。同一模型处理文本生成、翻译、问答等多种任务(如PaLM-2)。

涌现能力(Emergent Abilities),模型在达到一定规模后突现出设计时未明确编程的能力。

5、大模型能干什么?

聊天对答如流: 像ChatGPT,能陪你谈天说地、答疑解惑,如同一位博学好友。

内容信手拈来: 写文章、编剧本、起标题、生成营销文案、创作诗歌小说… 许多文字工作它都能胜任。

代码生成助手: 描述需求,自动生成程序代码片段,程序员效率倍增。

知识百事通: 基于所学知识回答问题、总结信息、翻译语言。

识图辨万物: 能看懂图片内容,描述场景、识别物体、甚至分析图表数据。

专业领域赋能: 辅助法律文书、医学文献分析、金融报告撰写等,潜力巨大。

6、总结

大模型并非科幻中的魔法书,而是人类智慧与工程奇迹的结晶。

它也真的不是神,大模型本质还是基于概率统计的超级模仿者,正因为此,有时会出现幻觉,一本正经的胡说不道;另外它缺乏真正的认知和情感,更像一个高级的“语言概率游戏大师”;输出内容的好坏很大程度依赖训练数据的质量。

它不会取代人类,但会深刻重塑我们工作与生活的面貌。理解它、善用它、审慎地发展它——面对这位新晋的“超级大脑”,我们正站在一个新时代的门槛上,既充满机遇,也需肩负责任。

这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值