【私有化部署Dify】快速搭建AI应用全指南

Dify介绍

Dify 是一个开源的 LLM 应用开发平台。其直观的界面结合了 AI 工作流、RAG 管道、Agent、模型管理、可观测性功能等,让您可以快速从原型到生产。以下是其核心功能列表:

1. 工作流: 在画布上构建和测试功能强大的 AI 工作流程,利用以下所有功能以及更多功能。

2. 全面的模型支持: 与数百种专有/开源 LLMs 以及数十种推理提供商和自托管解决方案无缝集成,涵盖 GPT、Mistral、Llama3 以及任何与 OpenAI API 兼容的模型。完整的支持模型提供商列表可在此处[1]找到。

3. Prompt IDE: 用于制作提示、比较模型性能以及向基于聊天的应用程序添加其他功能(如文本转语音)的直观界面。

4. RAG Pipeline: 广泛的 RAG 功能,涵盖从文档摄入到检索的所有内容,支持从 PDF、PPT 和其他常见文档格式中提取文本的开箱即用的支持。

5. Agent 智能体: 您可以基于 LLM 函数调用或 ReAct 定义 Agent,并为 Agent 添加预构建或自定义工具。Dify 为 AI Agent 提供了50多种内置工具,如谷歌搜索、DELL·E、Stable Diffusion 和 WolframAlpha 等。

6. LLMOps: 随时间监视和分析应用程序日志和性能。您可以根据生产数据和标注持续改进提示、数据集和模型。

7. 后端即服务: 所有 Dify 的功能都带有相应的 API,因此您可以轻松地将 Dify 集成到自己的业务逻辑中。

Dify架构图如下:

功能比较

功能Dify.AILangChainFlowiseOpenAI Assistant API
编程方法API + 应用程序导向Python 代码应用程序导向API 导向
支持的 LLMs丰富多样丰富多样丰富多样仅限 OpenAI
RAG引擎
Agent
工作流
可观测性
企业功能(SSO/访问控制)
本地部署

系统要求

CPU >= 2 Core   RAM >= 4GB

如果你是MacOS系统的话,可以参考之前的文章准备一下本地的云环境:打造高效MacOS系统环境

本地部署

为了方便本地快速验证,这里使用Docker Compose 运行。在企业或者生产环境建议采用 K8S环境部署,Dify 依赖较多的中间件,如:weaviate、redis、postgres 等,这些中间件可以采用外部已部署的应用或者容器部署,但是需要注意数据的存储。

Docker Compose 部署

克隆Dify项目并运行:

## 克隆dify项目   $ git clone git@github.com:langgenius/dify.git      ## Docker Compose 运行   $ cd dify/docker/    $ docker-compose up -d

如果官方脚本运行不起来,可以参考我调整后的Github脚本:

$ git clone git@github.com:flyeric0212/eric-dify-docker.git   $ cd eric-dify-docker   $ docker-compose up -d

K8S 部署

使用Helm Chart 部署,在K8S环境部署Dify:

## Helm Chart by @LeoQuote   https://github.com/douban/charts/tree/master/charts/dify      ## Helm Chart by @BorisPolonsky   https://github.com/BorisPolonsky/dify-helm

部署验证

使用浏览器打开如下地址:

http://localhost:8090/install

注意官方的是80端口,因为80端口本地被占用,所以调整成8090端口。

查看本地存储:

[20:25:18] dify $ docker volume ls   DRIVER    VOLUME NAME   local     1b48b646f10961973a2abb9c885b965d7f54860dca7d7a4d42a531dc13d96b0d   local     446e6dfa7f4d14c2aed281af1b772495af71698bdae62fcc9140dbc57ac0bd5a   local     dify_app-data   local     dify_postgres-data   local     dify_redis-data   local     dify_weaviate-data

这样可以随时本地关闭和启动 Dify App,数据并不会丢失。

注册管理员账号:

登陆成功首页:

快速构建应用

先添加模型:chatgpt以及ollama模型

完成模型添加后:

使用模板快速使用创建一个 Code Interpreter ChatBot 应用,先使用gpt-3.5-turbo 模型进行提问:

再切换到本地模型 ollama3:8b 提问:

添加知识库

选择本地数据源,支持非常多的文件格式,如:TXT、Markdown、PDF等。

文档分段和清洗:

存储到向量数据库:

基于知识库新建应用:

这次使用共新建了两个应用:

写在最后

Dify 可以切换几乎所有主流的模型,通过模板可以快速创建应用,添加各种类型的文档作为知识库,添加后端API等,相较于 LangChain 需要通过 Python 代码进行开发,Dify 开箱即用,对于大部分人来说更加的友好,最重要的可以进行私有化部署。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### Dify离线部署方法指南 Dify是一款开源的语言型(LLM)应用开发平台,结合了后端即服务(BaaS)和LLMOps理念,能够帮助开发者快速搭建生产级的生成式AI应用。以下是对Dify离线部署方法的详细介绍。 #### 一、离线部署的优势 在无网环境中实现私有化部署可以带来以下优势: - **数据隐私保障**:敏感数据无需上传至第三方平台[^1]。 - **定制化开发**:开发者可以根据企业需求自由修改代码。 - **性能优化**:根据硬件资源配置进行深度调优[^1]。 - **成本控制**:长期使用相较于云服务更具经济性。 - **网络限制适应**:适用于无外网连接的内网环境[^1]。 #### 二、部署前准备 ##### 1. 环境要求 确保服务器或本地机器满足以下最低配置要求: - **操作系统**:Ubuntu 20.04+ 或 CentOS 7+(推荐Linux),也可以选择Windows/macOS。 - **硬件配置**: - CPU:4核以上(建议8核)。 - 内存:8GB以上(建议16GB)。 - 存储:50GB以上可用空间。 - **必备组件**: - Docker 20.10+。 - Docker Compose 2.20+。 如果需要在无网络环境下安装Docker,可以提前下载Docker的离线安装包[^1]。 ##### 2. 下载Dify源码及依赖 运行以下命令以克隆Dify插件重打包仓库并进入相关目录: ```bash git clone https://github.com/junjiem/dify-plugin-repackaging.git cd dify-plugin-repackaging ``` 注意:上述步骤假设您已经具备联网环境来获取初始代码库。若完全处于离线状态,则需预先将代码库打包并传输至目标设备[^2]。 #### 三、离线部署步骤 ##### 1. 配置Docker环境 确保Docker已正确安装并运行。对于离线环境,可以通过以下方式加载Docker镜像: - 提前从联网设备拉取所需镜像,并保存为`.tar`文件。 - 使用`docker load`命令加载镜像到目标设备中。 例如: ```bash docker load < path/to/image.tar ``` ##### 2. 启动Dify服务 通过Docker Compose启动Dify服务。首先编辑`docker-compose.yml`文件,根据实际硬件环境调整资源配置。然后执行以下命令: ```bash docker-compose up -d ``` ##### 3. 验证部署成功 访问部署环境中的指定地址(通常是`http://localhost:8000`),确认Dify服务是否正常运行。 #### 四、常见问题与解决方法 - **问题1**:Docker无法启动。 检查系统资源是否充足,并确保Docker版本符合要求[^1]。 - **问题2**:服务启动失败。 查看日志文件,定位具体错误原因。通常可能是镜像缺失或配置错误[^2]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值