一、AGI的定义与现状:从技术突破到能力边界
通用人工智能(AGI)是指具备跨领域学习、推理与决策能力的人工智能系统,其核心目标是模拟人类的全域认知能力。与仅能处理单一任务的窄AI不同,AGI需自主适应复杂环境,整合文本、图像、声音等多模态信息进行综合判断。当前技术阶段(以2025年为节点)的AGI呈现以下特征:
- 技术定位:虽在语言生成、图像识别等任务上表现卓越,但距离真正的自主目标设定与复杂环境适应仍有差距,更多被视为“文化和社会技术”,承担信息整合与传播的历史性角色。
- 关键突破:谷歌Genie 3等世界模型实现了动态环境交互与长时物理一致性模拟(如光影变化、水流运动),推动技术向具身智能演进,但持续时长仍局限在分钟级。
- 发展路线图:据预测,2025-2028年将完成跨模态认知引擎,2033-2035年通过扩展版图灵测试,最终在2036年后实现社会级系统协同治理。
二、应用场景落地:千行百业的智能化重构
1. 传统产业升级
- 医疗领域:辅助诊断(分析医学影像与病历)、加速药物研发(分子筛选效率提升50%以上)。
- 金融领域:智能投顾定制财富方案,风控系统预测市场波动,取代传统规则引擎(漏报率从35%降至2%)。
- 制造业:通过生产优化与故障预测提升设备利用率,供应链管理实现动态调优。
2. 新兴场景爆发
- 内容创作:文生视频工具(如Sora)、广告文案生成重塑创意产业。
- 虚拟交互:Genie 3支持沉浸式教育体验(历史场景重建)与机器人训练(仓库物流仿真)。
- 企业服务:RAG技术构建知识库问答系统,解决法律合同审查、医疗咨询等高精度需求。
三、就业市场全景:机遇、岗位与薪资图谱
岗位需求爆发与薪资领先
- 人才缺口:大模型应用工程师岗位供需比达1:8,中国AI人才缺口占全球40%(2030年预计达500万)。
- 薪资水平:70.8%应用工程师月薪20K-50K,资深算法专家年薪超200万;非技术岗如AI产品经理平均月薪49K。
热门岗位核心能力要求
下表列出2025年热门AGI相关岗位的技能需求与薪资范围:
岗位类型 | 代表职位 | 核心技能 | 薪资范围(年薪) |
---|---|---|---|
技术研发岗 | 大模型架构师、RAG工程师 | PyTorch、分布式训练、RAG优化 | 35万-200万+ |
应用开发岗 | Agent系统工程师 | LangChain、工具调用、AutoGPT | 24万-60万 |
交叉领域岗 | 行业解决方案专家 | 领域知识(医疗/金融)+AI工具链 | 30万-80万 |
非技术岗 | AI产品经理 | 技术逻辑、业务流程设计、低代码 | 18万-60万 |
就业结构性变化
- 替代性风险:规则明确的白领工作首当其冲(如基础法律分析、会计审计),预计95%重复性岗位将被重构。
- 新增机会:技术岗聚焦RAG优化、Agent开发;非技术岗需深耕“AI+行业”复合能力(如医疗伦理审查、金融合规设计)。
四、挑战与未来:技术瓶颈与人类协同
技术瓶颈与应对
- 模型缺陷:幻觉问题(生成虚假信息)需通过RAG与人类反馈强化学习(RLHF)缓解。
- 算力成本:千亿级模型训练耗资数百万美元,中小企业依赖开源模型(LLaMA、DeepSeek-MoE)与私有化部署。
- 伦理风险:数据隐私(GDPR)、生成内容版权纠纷要求开发可解释性系统。
人类不可替代的优势
- 情感智能:医患沟通、客户关怀等需人类同理心。
- 创造力与跨域整合:AI提供工具支持,但创意灵感与复杂决策仍需人类主导。
五、转型策略:普通人如何卡位AGI时代
学习路径设计
- 技术岗:从Python基础→Hugging Face模型调用→LangChain开发(全栈工程师学习周期6-8个月)。
- 非技术岗:掌握Prompt工程三段式(角色+任务+约束),通过Coze平台搭建行业助手(如教育知识库)。
差异化竞争关键
- “行业经验×AI工具”公式:零售从业者用聚类算法优化选品,教育工作者开发RAG备课助手。
- 认证背书:工信部“大模型应用工程师认证”显著提升录用率。
AGI不是终点,而是人类能力的扩展器。当谷歌Genie 3在虚拟仓库中训练机器人,当RAG系统将医疗误诊率降低40%,我们看到的不仅是技术迭代,更是人机协作新文明的开端。未来十年,掌握“AI+领域”双语言的人,将成为重塑世界图景的核心变量——这已不是预言,而是正在发生的就业革命。
六、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
01.大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
02.如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。