从运维到AI大模型专家:史上最全转行攻略来了,一篇搞定,让你心里有底!

前言

做运维的苦,谁做谁懂。有时候真感觉自己就像个杂役,在公司都快成修电脑的了。不装了,我要转行!在此给大家分享点经验,希望能帮到你们。

运维工程师若要转行至大模型领域,需要学习一系列全新的技能与知识。以下是一份详细的转行攻略,助力你从运维工程师顺利迈向大模型领域:
在这里插入图片描述

一、夯实基础知识

  • 数学基础:学习线性代数、概率论、统计学以及微积分等基础数学知识,这些是涉足大模型领域的根基。
  • 编程语言:若你已熟悉 Python,那这是个不错的起点。因为 Python 是机器学习与数据科学领域广泛应用的编程语言。

二、钻研机器学习理论

  • 机器学习基础:了解机器学习的基本概念,涵盖监督学习、无监督学习、强化学习等方面。
  • 深度学习:深入探究神经网络的基本结构,例如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。

三、掌握数据处理技能

  • 数据清洗与预处理:学习如何对数据进行处理与清洗,从而为大模型提供高质量的输入数据。
  • 数据分析与可视化:学会运用如 Pandas、NumPy、Matplotlib 等工具进行数据分析与可视化操作。

四、积累实践项目经验

  • 在线课程与项目:参加 Coursera、edX、Udacity 等平台上的机器学习与深度学习课程,并完成相关项目。
  • 开源贡献:积极参与开源项目,为现有的机器学习模型或者工具贡献代码。

五、学习框架与工具

  • TensorFlow 与 PyTorch:学习这两大最为流行的深度学习框架之一,并通过实践操作掌握其用法。
  • 模型部署:了解如何将模型部署至生产环境,学习使用 Flask 或者 Django 等 Web 框架。

六、深入专业领域

  • 自然语言处理(NLP):若对处理文本数据感兴趣,深入学习 NLP 相关知识,了解词嵌入、序列模型、Transformer 模型等内容。
  • 计算机视觉:如果对图像和视频处理感兴趣,学习计算机视觉的基础知识,如图像识别、目标检测等方面。

七、打造个人项目

  • 创建个人作品集:开发一些个人项目,比如构建一个简单的推荐系统、情感分析工具或者图像识别应用,并将其添加至你的 GitHub 仓库。

八、参与社区和会议

  • 加入 AI 社区:参与线上论坛、社交媒体群组以及本地的 Meetup 活动,与其他机器学习爱好者进行交流。
  • 参加会议和研讨会:参加与机器学习和 AI 相关的会议和研讨会,以掌握最新的研究和发展趋势。

九、考虑进修教育

  • 研究生学位:若你期望更深入地学习,可以考虑攻读计算机科学或者数据科学的研究生学位。
  • 专业证书:获取相关的专业证书,比如谷歌的机器学习工程师证书。

十、规划职业发展

  • 职业转型:在简历中重点突出新掌握的技能与项目经验,开始申请与大模型相关的工作或者实习机会。
  • 持续学习:大模型和 AI 领域不断发展进步,持续学习新的技术和算法对于保持竞争力至关重要。

通过上述步骤,你能够从运维工程师成功转型为大模型领域的专业人士。请记住,这个过程需要投入时间和精力,但随着技能与知识的不断积累,你将能够在这个新兴且充满机遇的领域中取得成功。

十一、AI大模型学习和面试资源

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值