2012-2023年 上市公司-知识重组创造、知识重组再利用数据.ziphttps://download.csdn.net/download/2401_84585615/90469585https://download.csdn.net/download/2401_84585615/90469585
本数据集聚焦上市公司在知识管理领域的动态,涵盖2012至2023年间企业专利行为中的知识重组活动。知识重组创造指整合从未关联的专利技术元素形成新组合,而知识重组再利用则基于五年内专利IPC分类号组合的重复使用情况判定,体现对既有知识元素的优化应用。数据通过量化两类行为,揭示企业技术创新的路径差异,为研究知识演化与创新绩效提供微观基础。例如,高频知识重组创造的企业往往具备更强的技术突破能力,而重组再利用则可能反映技术迭代效率。
数据字段包括代码、年份、知识重组创造、知识重组再利用、知识重组创造取对数、知识重组再利用取对数。
知识重组再利用:计算五年内某一专利的ipc分类号组合是否出现过,若出现过,则该专利为知识重组再利用专利
知识重组创造:若没出现过,则该专利为知识重组创造专利。
数据来源以上市公司公开专利信息为主,结合证监会行业分类及年报交叉验证,确保技术路径追踪的连续性。
参考文献:[1]陈立勇,张洁琼,曾德明,等.知识重组、协作研发深度对企业技术标准制定的影响研究[J].管理学报,2019,16(04):531-540.
[2]余良如,于渤.知识重组对高技术企业创新绩效的影响机制研究[J].研究与发展管理,2024,36(03):70-83.
该数据对多领域具有指导价值:其一,企业可据此评估研发效率,例如重组创造占比高的企业更可能实现技术突破;其二,政策制定者可分析国企在战略并购中的知识整合优势(如央企交易规模占比超60%),为产业政策设计提供依据;其三,学术研究可结合统计模型(如DID分析)挖掘技术演化规律,尤其适用于专利生命周期、跨行业融合等场景。文献显示,知识重组创造与突破性创新正相关,而环境动态性(如市场活力)会强化这一关系,凸显数据在创新管理研究中的实用性。