2024年最新动手组装深度学习机器+RTX2070Super

本文详细介绍了如何组装一台用于深度学习的电脑,包括选择RTX2070Super GPU、Intel i7 9700k CPU,以及主板、内存、硬盘、电源等硬件的选择和安装过程。强调了GPU和CPU在深度学习中的重要性,并提供了硬件配置清单和安装注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


  1. GPU,对于深度学习,GPU是最重要的,由于目前只有nvidia显卡支持Cuda,因此别无他选,参考多篇博文,目前在kaggle获奖得主推荐使用RTX2070,考虑未来的扩展性,我选择了RTX2070Super;

  2. CPU,就深度学习而言对于CPU的要求并不高,AMD和Intel都可以,同样性能的CPU,Intel价格大概是AMD的两倍左右,但是作为强迫症患者,我还是选择了Intel i7 9700k,但是超频好像真的是有些性能冗余;

  3. 主板,主板同样要求并不高,但是要适配所选用的CPU和GPU,如果为了防止以后单显卡容量不足而采用双显卡,需要选用支持双显卡的主板,我选择了微星z390a-pro,优点是便宜(但是微星这个主板对Linux的支持好像并不是特别好);

  4. 内存,内存至少要与GPU显存容量相同;

  5. 硬盘,对于深度学习来讲,另一个较为重要的因素就是数据集,考虑到目前动匝上G到数十G的数据集,为了存储数据集,需要加装硬盘;

  6. 固态,为了提高操作系统加载速度,当然,如果固态足够就不需要硬盘了;

  7. 电源,电源的选择需要能够带动系统的运行即可,计算方法为,电源额定功率=GPU额定功率+CPU额定功率+100w左右的冗余量,RTX 2070Super额定功率为600w,因此选择750够用;

  8. CPU散热器及机箱,机箱的选择只要注意显卡限长的要求。

总结配置清单


| 项目 | 配置 |

| — | — |

| GPU | 索泰 RTX2070 Super |

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值