0-1背包问题

// #include<iostream>

// #include<algorithm>

// using namespace std;

// const int N = 1010;

// int n,m; // n:物品个数 m:背包容量

// int v[N],w[N]; // v:体积 w:价值

// int f[N][N];// f[i][j]表示前i个物品放入容量为j的背包的最大价值

// int main()

// {

//     cin>>n>>m;

//     for(int i=1;i<=n;i++)  cin>>v[i]>>w[i];     // 输入物品的体积和价值

//     for(int i=1;i<=n;i++){// 枚举物品

//         for(int j=1;j<=m;j++){      // 枚举背包容量

//             if(j<v[i])   f[i][j]=f[i-1][j];// 如果第i个物品的体积大于背包容量,那么第i个物品不能放入背包

//             else {

//                 f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]);// 否则,第i个物品可以放入背包,取放入和不放入的最大值

               

//             }

           

           

//         }

//     }

   

//     cout<<f[n][m]<<endl;// 输出最大价值

   

   

//     return 0;

// }


 

#include<iostream>

#include<algorithm>

#include<cmath>

using namespace std;

const int N = 1010;

int n,m;

int v[N],w[N];// v:体积 w:价值

int f[N];// f[i]表示容量为i的背包的最大价值

int main()

{

    cin>>n>>m;// 输入物品个数和背包容量

    for(int i=1;i<=n;i++)  cin>>v[i]>>w[i];// 输入物品的体积和价值

    for(int i=1;i<=n;i++){// 枚举物品

        for(int j=m;j>=v[i];j--){// 枚举背包容量

            f[j]=max(f[j],f[j-v[i]]+w[i]);// f[j]表示容量为j的背包的最大价值

        }

    }

    cout<<f[m]<<endl;// 输出最大价值

    return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值