ClickHouse性能优化

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

3.3.2 如何创建稀疏索引

3.3.3 如何使用稀疏索引

3.3.4 如何创建组合维度的索引

3.3.5 如何维护索引

4. 查询优化

4.1 避免SELECT *

4.2 使用LIMIT

4.3 避免在WHERE子句中使用函数

5. 硬件优化

5.1 CPU选择

5.2 内存配置

5.3 磁盘选择

5.3.1 如何监控磁盘使用情况

5.4 网络配置

6. 集群优化

6.1 集群配置

6.2 负载均衡

6.3 容错和高可用性

6.3.1 如何配置副本

6.3.2 如何监控副本状态

6.3.3 如何恢复故障副本

6.3.4 如何解决副本延迟问题

6.3.5 如何避免副本故障

6.3.6 如何使用ZooKeeper

6.3.7 如何监控网络连接

6.3.8 如何监控ZooKeeper状态

6.3.9 如何使用clickhouse-backup进行数据备份

6.3.10 如何解决网络堵塞问题



1. 了解ClickHouse的架构

1.1 ClickHouse的分布式架构

ClickHouse的分布式架构允许您将数据分片存储在多个服务器上,以提高查询性能和可靠性。在ClickHouse中,可以使用分布式表来实现数据分片。分布式表会根据定义的分片键将数据分发到不同的服务器上。可以使用随机数或哈希函数作为分片键。

此外,ClickHouse还支持数据复制,以提供容错能力。可以使用ReplicatedMergeTree表来实现数据复制。ClickHouse Keeper提供了用于数据复制和分布式DDL查询执行的协调系统。ClickHouse Keeper与Apache ZooKeeper兼容。

1.1.1 ClickHouse是读写分离架构吗

ClickHouse是一个列式数据库管理系统,它支持数据复制和分片。你可以在多个服务器上部署ClickHouse集群,以提高数据的容错能力和查询性能。

在ClickHouse集群中,每个分片都可以包含多个副本。每个副本都存储了一份完整的数据。当你执行写入操作时,数据会被写入到所有副本中。当你执行查询操作时,查询会被发送到一个健康的副本上执行。

因此,ClickHouse并不是严格意义上的读写分离架构。所有副本都可以用于读写操作。但是,由于每个分片都包含多个副本,所以你可以通过负载均衡来分配查询请求,从而实现类似于读写分离的效果。

1.1.2 如何查询ClickHouse的分布式表

查询ClickHouse的分布式表与查询普通表非常相似。只需编写一个标准的SQL查询,并将其指向分布式表即可。当查询分布式表时,ClickHouse会自动将查询发送到所有分片,并将结果合并在一起。

例如,如果您有一个名为my\_distributed\_table的分布式表,您可以使用以下查询来检索所有行:

SELECT * FROM my_distributed_table;

这个查询会被自动发送到所有分片,并返回所有分片中的所有行。


1.2 数据存储方式

ClickHouse是一个真正的列式数据库管理系统。数据按列存储,并在执行过程中以数组(向量或列块)的形式处理。只要有可能,操作都会在数组上进行,而不是在单个值上进行。这被称为“向量化查询执行”,它有助于降低实际数据处理的成本。

通常,处理的数据存储在本地文件系统中,即与ClickHouse服务器位于同一台机器上。这需要大容量磁盘,可能会非常昂贵。为了避免这种情况,您可以将数据远程存储在Amazon S3磁盘或Hadoop分布式文件系统(HDFS)中。要使用Amazon S3磁盘上存储的数据,请使用S3表引擎;要使用Hadoop分布式文件系统中的数据,请使用HDFS表引擎。

ClickHouse使用列式存储来存储数据。这意味着,每一列的数据都单独存储在一个文件中。这种存储方式有助于提高查询性能,因为在处理查询时,只需要读取相关的列,而不需要读取整张表。

此外,ClickHouse还使用了多种压缩算法来压缩数据。这些压缩算法可以有效地减少磁盘空间占用,并提高查询性能。

在存储数据时,ClickHouse会将数据分成多个分区。每个分区包含一段时间内的数据。分区可以帮助提高查询性能,因为在处理查询时,只需要扫描相关的分区,而不需要扫描整张表。

总之,在ClickHouse中,数据存储方式包括列式存储、数据压缩和分区等技术。这些技术都有助于提高查询性能。

1.2.1 如何配置数据压缩

在ClickHouse中,数据压缩是自动进行的,无需手动配置。但是,可以通过调整配置参数来控制数据压缩的行为。

例如,可以在config.xml文件中配置<compression>标签来指定压缩算法和压缩级别。下面是一个简单的示例:

<compression>
    <case>
        <min_part_size>10000000000</min_part_size>
        <min_part_size_ratio>0.01</min_part_size_ratio>
        <method>zstd</method>
        <level>1</level>
    </case>
</compression>

上面的配置指定了当分区大小大于10GB或占总大小的1%时,使用zstd算法进行压缩,并且压缩级别为1。

此外,还可以配置其他参数来控制数据压缩的行为。例如,可以配置<min\_rows><min\_bytes>参数来指定触发压缩的最小行数和最小字节数。

总之,在ClickHouse中,可以通过调整配置参数来控制数据压缩的行为。

1.2.2 如何选择合适的压缩算法

在ClickHouse中,可以根据数据特征和查询需求来选择合适的压缩算法。例如:

  1. LZ4:LZ4算法具有较快的压缩和解压速度,但压缩率较低。适用于对查询性能要求较高,但对磁盘空间占用要求不高的场景。

  2. ZSTD:ZSTD算法具有较高的压缩率,但压缩和解压速度较慢。适用于对磁盘空间占用要求较高,但对查询性能要求不高的场景。

  3. Delta + LZ4/ZSTD:Delta编码可以有效地压缩有序数据。可以将Delta编码与LZ4或ZSTD算法结合使用,以提高压缩率。

此外,在选择压缩算法时,还应考虑数据类型、数据分布、查询模式等因素。可以通过测试不同的压缩算法来确定最佳的压缩方案。

总之,在ClickHouse中,可以根据数据特征和查询需求来选择合适的压缩算法。

1.2.3 如何清理旧数据

在ClickHouse中,可以使用多种方法来清理旧数据。例如:

  1. 使用ALTER TABLE ... DELETE语句:可以使用ALTER TABLE ... DELETE语句来删除不再需要的数据。例如,可以执行以下SQL语句来删除早于2022年1月1日的数据:
ALTER TABLE mytable DELETE WHERE date < '2022-01-01';
  1. 使用ALTER TABLE ... DROP PARTITION语句:如果需要删除整个分区的数据,可以使用ALTER TABLE ... DROP PARTITION语句。例如,可以执行以下SQL语句来删除2022年1月份的数据:
ALTER TABLE mytable DROP PARTITION '202201';
  1. 使用TTL设置:可以在创建表时指定TTL设置,以自动删除过期数据。例如,可以执行以下SQL语句来创建一个带有TTL设置的表:
CREATE TABLE mytable
(
    date Date,
    id UInt32,
    value String,
    TTL date + INTERVAL 1 MONTH
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(date)
ORDER BY id;

上面的SQL语句指定了一个TTL设置,表示数据在插入1个月后会自动过期并被删除。

总之,在ClickHouse中,可以使用ALTER TABLE ... DELETE语句、ALTER TABLE ... DROP PARTITION语句和TTL设置等方法来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值