目标跟踪 YOLO11 单目标跟踪

1.效果

目标跟踪 单目标跟踪

2.代码

import os
import sys
import argparse

prj_path = os.path.join(os.path.dirname(__file__), '..')
if prj_path not in sys.path:
    sys.path.append(prj_path)

from lib.test.evaluation import Tracker


def run_video(tracker_name, tracker_param, videofile, optional_box=None, debug=None, save_results=False):
    """Run the tracker on your webcam.
    args:
        tracker_name: Name of tracking method.
        tracker_param: Name of parameter file.
        debug: Debug level.
    """
    tracker = Tracker(tracker_name, tracker_param, "video")
    tracker.run_video(videofilepath=videofile, optional_box=optional_box, debug=debug, save_results=save_results)


def main():
    parser = argparse.ArgumentParser(description='Run the tracker on your webcam.')
    parser.add_argument('tracker_name', type=str, help='Name of tracking method.')
    parser.add_argument('tracker_param', type=str, help='Name of parameter file.')
    parser.add_argument('videofile', type=str, help='path to a video file.')
    parser.add_argument('--optional_box', type=float, default=None, nargs="+", help='optional_box with format x y w h.')
    parser.add_argument('--debug', type=int, default=0, help='Debug level.')
    parser.add_argument('--save_results', dest='save_results', action='store_true', help='Save bounding boxes')
    parser.set_defaults(save_results=False)

    args = parser.parse_args()

    run_video(args.tracker_name, args.tracker_param, args.videofile, args.optional_box, args.debug, args.save_results)


if __name__ == '__main__':
    main()

3.其他
需要的伙伴留言

### 使用YOLO实现云台设备上目标跟踪的技术详解 #### 选择合适的YOLO版本 对于云台设备的目标跟踪应用,考虑到计算资源有限以及实时性能需求,YOLOv5是一个理想的选择。该模型不仅具备高效的图像信息处理能力,在面对复杂场景下的重叠分类区域依然表现出色[^1]。 ```python import torch from models.experimental import attempt_load device = 'cuda' if torch.cuda.is_available() else 'cpu' model = attempt_load('yolov5s.pt', map_location=device) # 加载预训练权重文件 ``` #### 结合Deep-SORT提升跟踪效果 为了提高目标跟踪的效果并解决遮挡等问题,可以引入Deep-SORT算法来增强YOLOv5的功能。具体来说,通过融合匈牙利匹配(Hungarian method),能够实现实时多目标追踪;而卡尔曼滤波器则用于平滑物体运动轨迹预测,从而确保即使在高速动态环境中也能保持稳定可靠的跟踪表现。 ```python from deep_sort.deep_sort import DeepSort deepsort_tracker = DeepSort(max_age=30, n_init=2) detections = model(image).pred[0].cpu().numpy() tracks = deepsort_tracker.update(detections[:, :4], detections[:, 4]) ``` #### 小对象优化策略 针对小型或远距离目标难以被有效检测的情况,可以在YOLOv5架构内部替换原有的最大池化层(MaxPooling)为跨步卷积(Cross-Stage Partial Connections),这有助于改善小尺寸特征图的质量,进而提升对细粒度细节的理解力和捕捉精度。 ```python class CSPDarknet(nn.Module): def __init__(self, ...): super().__init__() self.backbone = nn.Sequential( Conv(...), CrossConv(...), # 替代MaxPool2d ... ) ``` #### 实现案例分析 实际项目中成功实现了基于上述方案的RoboMaster EP自动辅助瞄准系统。此系统利用改进后的YOLOv5作为核心感知模块,并配合其他组件完成了从视觉输入到决策输出的一整套流程设计。实验结果显示,在多种测试环境下均能取得良好的实战成绩,显著提高了机器人的自主作战效能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值