目录
1 LLM (大语言模型)
2 Transformer (自注意力机制)
3 Prompt (提示词)
4 理解API
5 Function Calling (函数调用)
6 Agent (智能体)
7 MCP (模型上下文协议)
8 A2A (Agent通信协议)
9 未来假想
本文尽量用最简单的方式, 帮读者理解 LLM, Transformer, Prompt, Function calling, MCP, Agent, A2A 等这些基本概念。表述时不追求绝对准确, 尽量通俗易懂。部分内容有个人理解的成份, 内容难免疏漏, 欢迎指正。注意: 本文需要你有基本的代码阅读能力。当然非开发阅读也不会很困难。
01 LLM (大语言模型)
本质就是文字接龙。
把问题当成输入,把大模型当成函数,把回答当成输出。
大模型回答问题的过程,就是一个循环执行函数的过程。
另外有必要了解一下,AI技术爆发于2023年,ChatGPT经过了几次迭代才崭露头角。
- Transformer架构。
- 参数爆发增长。
- 人工干预奖励模型。
思考题: 语言能代表智能吗?
02 Transformer (自注意力机制)
自注意力机制就是动态关联上下文的能力。如何实现的呢?
- 每个分词就是一个 token
- 每个token 都有一个 Q, K, V 向量 (参数)
- Q 是查询向量
- K 是线索向量
- V 是答案向量
- 推理的过程:
- 当前token 的Q 与 前面所有的 K 计算权重
- 每个 token 的V加权相加得到一个 token预测值
- 选择 N 个与预测值最接近的 token, 掷骰子选择
最简化示例: 小明吃完冰淇淋,结果 => 肚子疼。
首先分词及每个token的 Q, K, V向量。
token | Q(查询) | K(键) | V(值) | 语义解释 |
---|---|---|---|---|
小明 | [0.2, 0.3] | [0.5, -0.1] | [0.1, 0.4] | 人物主体 |
吃完 | [-0.4, 0.6] | [0.3, 0.8] | [-0.2, 0.5] | 动作(吃完) |
冰淇淋 | [0.7, -0.5] | [-0.6, 0.9] | [0.9, -0.3] | 食物(冷饮,可能致腹泻) |
结果 | [0.8, 0.2] | [0.2, -0.7] | [0.4, 0.1] | 结果(需关联原因) |
接着开始推理:
1. 使用最后一个 token 的 Q(“结果”的 Q 向量)
Q_current = [0.8, 0.2]
2. 计算 Q_current 与所有 K 的点积(相似度)
点积公式:Q·K = q₁k₁ + q₂k₂
Token | K向量 | 点积计算 | 结果 |
---|---|---|---|
小明 | [0.5, -0.1] | 0.8 * 0.5 + 0.2*(-0.1) = 0.4 - 0.02 | 0.38 |
吃完 | [0.3, 0.8] | 0.8 * 0.3 + 0.2 * 0.8 = 0.24 + 0.16 | 0.4 |
冰淇淋 | [-0.6, 0.9] | 0.8*(-0.6) + 0.2 * 0.9 = -0.48 + 0.18 | -0.3 |
结果 | [0.2, -0.7] | 0.8 * 0.2 + 0.2*(-0.7) = 0.16 - 0.14 | 0.02 |
3. Softmax 归一化得到注意力权重
将点积结果输入 Softmax 函数
Token | 点积 | 指数值(e^x) | 权重 |
---|---|---|---|
小明 | 0.38 | e^0.38 ≈ 1.46 | 1.46 / 2.74 ≈ 0.53 |
吃完 | 0.4 | e^0.40 ≈ 1.49 | 1.49 / 2.74 ≈ 0.54 |
冰淇淋 | -0.3 | e^-0.30 ≈ 0.74 | 0.74 / 2.74 ≈ 0.27 |
结果 | 0.02 | e^0.02 ≈ 1.02 | 1.02 / 2.74 ≈ 0.37 |
4. 加权求和 V 向量生成上下文向量
将权重与对应 V 向量相乘后相加:
Token | 权重 | V向量 | 加权 V 向量 |
---|---|---|---|
小明 | 0.53 | [0.1, 0.4] | 0.53*[0.1, 0.4] ≈ [0.053, 0.212] |
吃完 | 0.54 | [-0.2, 0.5] | 0.54*[-0.2, 0.5] ≈ [-0.108, 0.27] |
冰淇淋 | 0.27 | [0.9, -0.3] | 0.27*[0.9, -0.3] ≈ [0.243, -0.081] |
结果 | 0.37 | [0.4, 0.1] | 0.37*[0.4, 0.1] ≈ [0.148, 0.037] |
最终上下文向量:
[0.053−0.108+0.243+0.148,0.212+0.27−0.081+0.037]=[0.336,0.438]
5. 预测下一个 token
模型将上下文向量 [0.336, 0.438] 与候选 token 的嵌入向量对比:
嵌入向量不作过多解释, 只要知道QKV三个向量可从嵌入向量计算得到即可
候选词 | 嵌入向量 | 相似度(点积) | 概率 |
---|---|---|---|
肚子疼 | [0.3, 0.5] | 0.336 * 0.3 + 0.438 * 0.5 ≈ 0.101 + 0.219 = 0.320 | 最大概率(例如 65%) |
头疼 | [0.2, 0.1] | 0.336 * 0.2 + 0.438 * 0.1 ≈ 0.067 + 0.044 = 0.111 | 次之(例如 20%) |
开心 | [-0.5, 0.8] | 0.336*(-0.5) + 0.438 * 0.8 ≈ -0.168 + 0.350 = 0.182 | 较低(例如 15%) |
最终模型选择最高概率的 “肚子疼” 作为下一个 token。
注意在实际场景中,预测的下一个token是不确定的,是因为有一个掷骰子的操作,大模型会在概率最大的几个token中随机挑选一个作为最终输出。
03 Prompt (提示词)
对于这个词大家并不陌生。我们用chatGPT时经常会用到, “你是一个…”
但你真的理解它吗?
与ai对话时的这种预设角色,其实并不是严格意义上的 prompt。
为什么这么说呢?先看一下API。
04 理解API
我们前面提到过大语言模型的 本质就是文字接龙,相对应的使用大模型也比较简单。可以参见deepseek的文字接龙 api 请求:
这里比较重要的几个部分,需要理解:
1. temperature 温度
Temperature(温度) 是一个控制生成文本随机性和多样性的关键参数。它通过调整模型输出的概率分布,直接影响生成内容的“保守”或“冒险”程度。看几个典型场景:
场景 | 温度 |
---|---|
代码生成/数学解题 | 0 |
数据抽取/分析 | 1 |
通用对话 | 1.3 |
翻译 | 1.3 |
创意类写作/诗歌创作 | 1.5 |
2. tools 工具支持
大模型对 function calling 的支持,后面再详细介绍。
3. 角色和信息
这一部分是ai对话的主体。其中role 定义了四个角色。
- system 系统设定。
- user 用户回复。
- assistant 模型回答。
- tool 是配合function call工作的角色,可以调用外部工具。
回到前一章的问题,ai对话时其实是user部分输入的内容,所以system角色的设定内容才应该是严格意义上的Prompt。
这有啥区别呢? (user 与 system?)
个人一个合理的猜测: system的内容在Transformer推理中拥有较高的权重。所以拥有较高的响应优先级。
4. 关于多轮对话
因为LLM是无状态的。我们要时刻记得文字接龙的游戏,因此在实际操作中也是这样的。
- 在第一轮请求时,传递给 API 的 messages 为。
- 大模型回答。
- 当用户发起第二轮问题时,请求变成了这样
05 Function Calling (函数调用)
仅仅一个可以回答问题的机器人,作用并不太大。
要完成复杂的任务,就需要大模型的输出是稳定的,而且是可编程的。
因此OpenAI 推出了 function calling的支持。也就是前面提到的 tools参数相关内容。
1. 基本流程
- 工具声明及用户输入
- 模型检测到需要使用工具,返回相关工具参数
- 开发者根据方法名和参数,调用相关工具方法
- 将工具方法的返回值,附加到请求中,再次请求大模型
- 得出最终结果
"The current temperature in Paris is 14°C (57.2°F)."
- 总结一下
2. 实现原理(猜测)
a. 实现方式一: prompt 遵循 (示例)
提前设置规则:
b. 实现方式二: 模型训练特定优化
对结构化输出有特定要求,可能需要特定训练吧。这个不太确定?
06 Agent (智能体)
包含: 大模型,任务规划,上下文记忆,工具调用。它是大模型能力的拓展。其实只要对API进行简单的封装,只要能完成特定任务,都可以称为智能体。比如下面的例子:
1. 创建AI客服系统

通过上面的智能体调用工具的示例我们可以看到,每接入一个工具,都需要编写相应的接入代码。经常写代码的我们都知道,这不是好的架构设计。 好的设计应该把动态改变的部分 ( tools的声名和调用分离出来 ),做为一个独立的模块来拓展。这就有了大众追捧的 MCP: -----(哪有这么玄,都是程序员的常规操作啊…)
遵循这套协议,可以实现工具与Agent的解耦。你的Agent 接入MCP协议的client sdk后。接入工具不再需要编写工具调用代码,只需要注册 MCP Server就可以了。而MCP Server可由各个服务商独立提供。
MCP Server做什么呢?
- 声明提供的能力 ListTools。
- 调用能力的方式 CallTool。
来看一下MCP Server的部分代码 (红框中就是做上面两个事,不难理解) :
08 A2A (Agent通信协议)
A2A本质是对 MCP协议的拓展,按字面意思就是 Agent to Agent. 有兴趣的自己详细看吧。
在这套协议下,一个智能体要引入其它的智能体的能力,也变得可插拔了。
09未来假想
如同蒸汽机,电,计算机这些伟大的技术一样。AI会成为下一个彻底改变人类生活工作方式的新技术。
1. 现在AI编程能力越来越强,程序员是不是要失业了?
职业不会消失,消失的只有人。但是AI编程的确会重塑整个行业。
我预想几年后,纯粹的业务代码工程师可能会消失。而会增加更多的AI编程工程师。
AI编程工程师的职责是解决AI模糊性的问题。而工具的引入就是增加确定性的手段。
我们程序员可以把自己的积累通过 mcp server的方式,挂载到项目agent 上去。这样我们就可以解放双手,去解决更多有挑战性的问题。
2. 当前我们有哪些工作可以由AI来处理?
理论上一切重复性的工作都可以交由AI完成。保险起见,创造性的工作暂时可以只作为参考。
- 日常的反馈分析。
- 团队知识库。
- 个人知识库。