AI 智能体是相比前一个生成式 AI 更进一步的 AI 系统,能够通过高级目标自主进行推理计算、制定计划并执行复杂任务。
我们目前大部分用的聊天咨询类工具都是生成式 AI,即 ChatBot。但是也不排除背后逻辑已经升级为一个 AI 智能体系统。
01. 什么是 AI 智能体
参考英伟达的官方 Glossary 给出的定义,我觉得写的就很好:
AI 智能体是新兴的数字化劳动力,既为我们服务,也与我们协作。它们代表人工智能领域的下一次演进,即从简单自动化向能够管理复杂工作流的自主系统过渡。这些智能体不仅可以自动执行耗时的重复性任务,而且可以充当智能个人助手,帮助个人和企业组织提高运营效率。
与遵循基本“请求和响应”框架的传统生成式 AI 模型不同,AI 智能体还能编排资源,与其他智能体协作,并使用各种工具,如大语言模型 (LLM)、检索增强生成 (RAG)、向量数据库、API、框架以及 Python 等高级编程语言,从而实现超越。
这些系统通常被称为“代理式 AI”或“LLM 智能体”,由于能够通过迭代规划和决策制定来实现目标,因此在市场上脱颖而出。例如,用于构建网站的 AI 智能体可以自主管理布局设计、HTML 和 CSS 代码编写、后端流程连接、内容生成和调试等任务,同时尽可能减少人工输入。
02. AI 智能体包含哪些组件?
要了解 AI 智能体的工作原理,分析其核心组件至关重要。这些组件协同工作,帮助智能体高效进行推理,制定计划并执行任务:
LLM:大语言模型 (LLM) 是 AI 智能体的“大脑”,负责协调决策制定。LLM 通过任务进行推理、制定行动计划,选择合适的工具,并管理对必要数据的访问权限,从而实现目标。作为智能体的核心,它负责定义和编排智能体的总体目标。
记忆模组:AI 智能体依靠记忆来维护上下文,并可以根据正在进行的任务或历史任务进行调整:
- 短期记忆:跟踪智能体的“思维链”和最近的操作,确保在当前工作流期间保留上下文。
- 长期记忆:保留历史交互情况和相关信息,以便随着时间推移更深入地理解上下文并改进决策制定过程。
规划模组:利用规划模组,AI 智能体可将复杂任务分解为可操作的步骤:
- 无反馈:使用“思维链”或“思维树”等结构化技术,将任务分解为可管理的步骤。
- 有反馈:整合 ReAct、Reflexion 或人机回圈反馈等迭代改进方法,以优化策略和结果。
工具:AI 智能体本身可以用作工具,但也可以通过集成外部系统来扩展功能,例如:
- API:以编程方式访问实时数据或执行操作。
- 数据库和 RAG 工作流:检索相关信息,确保知识库准确无误。
- 其他 AI 模型:与其他模型协作,执行专业任务。
03. AI 智能体的工作原理是什么?
AI 智能体可将核心组件无缝整合在一起,处理复杂的任务。下面的示例说明了这些组件如何协同工作,以响应特定用户请求。
案例:提示词:分析我们的最新季度销售数据,然后提供一个图表。
第 1 步:用户或机器提出请求
用户甚至是另一个智能体或系统请求分析销售数据并提供视觉表示,启动了智能体工作流。智能体处理此输入,并将其分解为可操作的步骤。
第 2 步:LLM:理解任务
LLM 充当 AI 智能体的大脑。它解读用户的提示词,以理解任务要求,例如:从数据库中检索数据。执行数据分析。创建可视化图表。
LLM 确定:已有哪些信息。需要其他哪些数据或工具。完成任务的分步计划。
第 3 步:规划模组:任务分解
规划模组会将任务划分解为具体的操作:
提取:从公司数据库中检索最新销售数据。
分析:应用适当的算法来识别趋势并获取洞察。
可视化:生成显示结果的图表。
第 4 步:记忆模组:提供上下文
记忆模组确保保留上下文,以便高效执行任务:
短期记忆:跟踪当前工作流的上下文(例如上个季度请求的类似任务),以简化流程。
长期记忆:保留历史数据,如数据库位置或首选分析方法,以便更深入地理解上下文。
第 5 步:工具集成:执行任务
智能体核心通过编排外部工具来完成每个步骤:
API:检索原始销售数据。
机器学习算法:分析数据以了解趋势和模式。
代码解译器:根据分析结果生成图表。
第 6 步:推理和反思:改进结果
在整个过程中,智能体会运用推理来优化工作流并提高准确性。这包括:
评估每项操作的有效性。
确保高效利用工具和资源。
从用户反馈中学习,以改进未来任务。
例如,如果生成的图表需要改进,智能体会调整方法,以便在后续工作流中提供更好的结果。
04. 有哪些不同类型的 AI 智能体框架?
在选择 AI 智能体框架时,必须考虑诸多因素,例如:
- 多智能体协作:项目是否需要多个智能体协同工作?
- 项目复杂性:框架适合简单的任务还是复杂的工作流?
- 数据处理:框架是否支持必要的数据集成和检索?
- 定制需求:定制智能体行为需要多大的灵活性?
- LLM 侧重点:框架是否会优先与大语言模型进行协作?
鉴于这些要求,一系列框架应运而生,可满足不同用例和复杂程度的需求。有多种方法可用于实施 AI 智能体,例如,引入自己的 Python、LangChain 和 Llama 堆栈。
下面列出了主要的 AI 智能体类型,涵盖了简单的系统到高度智能化的自适应框架:
智能体的类型 | 主要特征 | 用例示例 |
---|---|---|
简单反射型 | 根据当前感知和预定义规则执行操作 没有记忆或适应能力 | 恒温器根据传感器输入调节温度 |
基于模型的反射型 | 保留短期记忆或由规则指导的环境操作模型 | 导航系统根据交通状况更新路线 |
目标型 | 根据当前感知和预定义规则执行操作 没有记忆或适应能力 | 送货机器人优化前往目的地的路线 |
分层式 | 多层系统通过更高级别的智能体来管理专用智能体 | 工厂自动化系统与监督者和专业机器人协同工作 |
学习型 | 通过反馈和经验进行学习和调整 使用学习组件 | AI 推荐系统随着时间推移而改进建议 |
多智能体系统 (MAS) | 与其他智能体协作实现共同目标 在协调系统中运行 | 无人机队群协作投递包裹 |
效用型 | 通过最大限度地增加每次操作的效用或奖励来优化结果 | 动态定价算法根据市场条件调整费率 |
05. AI 智能体和 AI 助手的区别?
特性 | AI 助手 | AI 智能体 |
---|---|---|
目的 | 根据用户命令简化任务 | 自主完成复杂的多步骤目标驱动型任务 |
任务复杂程度 | 低到中 | 中到高 |
交互性 | 反应式 | 主动式 |
自主性 | 低: 依赖人工指导 | 高: 独立 基于规划和推理 |
学习能力 | 低: 最小(如果有) | 高: 从交互中学习,随着时间推移进行调整 |
集成度 | 高: 但仅限于特定应用 | 广泛性: 包含 API、数据库和工具 |
AI 智能体和 AI 助手在功能、自主程度以及可处理任务的复杂程度上存在巨大差异。
AI 助手是传统 AI 聊天机器人的进化版本。它们利用自然语言处理 (NLP) 理解文本或语音形式的用户查询,然后根据直接人工指令执行任务。这些系统(如 Apple 的 Siri、Amazon 的 Alexa 或 Google Assistant)在处理预定义任务或响应特定命令方面表现出色。
AI 智能体是一种更先进的 AI,其功能远超 AI 助手。它们利用规划、推理和上下文记忆来自主处理复杂的开放式任务。AI 智能体可以执行迭代工作流,使用一系列工具,并根据反馈和之前的交互情况做出调整。
06. AI 智能体的案例
工作流优化:用于特定应用的 AI 智能体有助于简化人们使用该工具的效率。例如,Co-Pilot 行车助理系统可帮助用户了解某款应用的所有功能,如何自动执行这些功能,或者为用户提出如何以最佳方式使用该工具的建议。
数据分析:数据分析可由用于提取和理解数据的多智能体系统执行。可以将数据分析视为一种“提取并执行”策略,其中一组智能体共同协作,从短期或长期记忆甚至 PDF 中收集数据,然后另一组执行智能体通过调用 API 来触发数据分析工具。示例:“今年公司有多少个季度产生了正向现金流?”
客户服务:AI 智能体可提供全天候支持,同时理解文本和语音形式的自然语言查询,通过代表客户采取行动来解决复杂问题。示例:呼叫中心接线员或聊天机器人可以自动执行工作流任务,例如连接 CRM 等内部系统,检查看客户请求是否符合退款条件,或者输入启动退货所需的数据。
协助软件开发(AI Coding):AI 智能体可以充当软件开发者的编码助手,帮助提供编码建议,指出错误并提供一键修复,提供拉取请求汇总并生成代码。
供应链管理:多智能体系统(或智能体“蜂群”)可以通过实时分析数据、根据需求监控和调整库存水平来帮助优化供应链,甚至可通过密切关注市场波动情况来帮助采购原材料。示例:分层式智能体系统可以由多层智能体组成,它们负责供应链的不同方面,并向根据数据做出决策的编排智能体上报相关情况。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发