半序格
定义:
给出一个部分序集(L,≤),如果对于任意a、b∈L,L的子集{a,b}在L中都有一个最大下界(记为inf{a,b})和一个最小上界(记为sup{a, b}),则称(L,≤)为一个格。
部分序关系≤:自反性、反对称性、传递性
部分序:
设R是集合A上的一个关系。如果R具有自反性,反对称性,传递性,则称R为一个部分序关系(半序关系、偏序关系),同时称集合A在部分序关系R下做成一个部分序集(半序集、偏序集),记作(A,R)。
通常,将部分序关系R写做“≤”,读做“小于或等于’
哈斯图:
1)以平面上的点代表部分序集中的元素。1)若x≤y,且x≠y,则将x画在y的下面)
2)若x≤y,x≠y,并且没有不同于x,y的z,使得x≤z≤y(称y盖住x),则在x,y之间用直线连结。
3)对于A中的子集M,A中元素a称为M的一个上界(下界)如果对M中任意元素m,都有m≤a(a≤m)
4)对于A中的子集M,A中元素a称为M的一个最小上界(或称上确界),如果a是M的一个上界,并且对M的任意一个上界X,都有a≤x。
(5)对于A中的子集M,A中元素a称为M的一个最大下界(或称下确界),如果a是M的一个下界,并且对M的任意一个下界x,都有x≤a。
例:
sup{a,b}=a和b的最小公倍
inf{a,b}=a和b的最高公因。
子格定义:设(L,≤)是格,S属于L,如果(S,≤)是格,则称(S,≤)是格(L,≤)的子格。
代数格:
定义:
设L是一个集合,*、+是L上两个二元代数运算,如果这两种运算对于L中元素满足:
(1)交换律(2)结合律(3)吸收律
.则称此代数系统(L,*,+)为一个格。
这里的*是求最大公因数,+是求最小公倍数
推论:
格是由加法交换半群和乘法交换半群构成,满足幂等律
例:
设S是一个集合,p(S)是S的幂集合,于是(p(S),∩,U)是一个代数格。
证明由交换,结合和吸收律三个方面下手
交换律:a∩b=b ∩a aUb=bUa
结合律:a∩(b∩c)=(a∩b)∩c aU(bUc)=(aUb)Uc
吸收律:a∩(aUb)=aU(a∩b)=a
设I+是所有正整数集合,两个正整数的最高公因*、最小公倍+。是I+上两个代数运算于是,(I+,*,+)是一个代数格。
证明如上
设n是一个正整数,Sn是n的所有正因数的集合,两个正整数的最高公因*、最小公倍+。 是Sn上两个代数运算,于是(Sn,*,+)是一个代数格。
显然运算满足封闭性
(Sn,*,+)是格(L,*,+)的子格的充要条件是:S属于L 且(S,*,+)是一个格。
(Sn,*,+)是(L,*,+)的代数子格,其中*、+分别是最高公因和最小公倍运算。
上面两种定义是等价的,inf{a,b}等价于其的最高公因数 ,sup{a,b}等价于求其的最小公倍数
定义A所定义的格和定义B所定义的格是等价的,亦即,一个半序格必是一个代数格;反之亦然。
但是一个代数格中的某些半序子格不一定是代数子格
性质:
半序格
代数格:
总结
.1设(L≤)是一个格,a、b是L中任意元素,于是a<=b <-> a*b=a <-> a+ b=b.
.2 设(L,≤)是一个格,a、b、c是L中任意元素:如果b<=c,则有a*b<=a*c,a+ b<=a+ c.
.3 设(L,≤)是一个格,a、b、c是L中任意元素:于是有
a+(b*c)<=(a+ b)x(a+c)
a*(b+c)>=(a*b)+(a*c)
其中关系“>=”是关系“<=”的对偶关系在一般格中,分配律不是总成立的,但上述分配不等式总是成立的。
.4 设(L,≤)是一个格,a、b、c是L中任意元素于是有 (*)
a<=b <-> a+(b*c)<=b*(a+ c)
格的同态和同构
定义:
设(L,*,+ )和(S,∧,V)是两个格,L到S内的映射g称为(L,*,+)到(S,∧,V)的格同态映射,如果对任意a、b属于L,都有
例:
格的同态像也是格
这格映射是保序的
格的同构:同态且双射
.6 设(L,*,+)是一个格,g是此格的自同态映射,于是g(L)是(L,*,+)的(代数)子格。
.7 设(L,*,+)、(S,∧,V)是两个格,若g是L到S上的同构映射,则g的逆映射g^-1是S到L上的同构映射。
n维格:
先证明同态:满足两个运算的性质
再证明满射,根据数量关系和格的封闭性就可以证明出满射和单射