格(代数格,半序格,格的同态,同构)

半序格

定义:

给出一个部分序集(L,≤),如果对于任意a、b∈L,L的子集{a,b}在L中都有一个最大下界(记为inf{a,b})一个最小上界(记为sup{a, b}),则称(L,≤)为一个格。

部分序关系≤:自反性、反对称性、传递性

部分序:

设R是集合A上的一个关系。如果R具有自反性,反对称性,传递性,则称R为一个部分序关系(半序关系、偏序关系),同时称集合A在部分序关系R下做成一个部分序集(半序集、偏序集),记作(A,R)。

通常,将部分序关系R写做“≤”,读做“小于或等于’

哈斯图:

1)以平面上的点代表部分序集中的元素。1)若x≤y,且x≠y,则将x画在y的下面)

2)若x≤y,x≠y,并且没有不同于x,y的z,使得x≤z≤y(称y盖住x),则在x,y之间用直线连结。

3)对于A中的子集M,A中元素a称为M的一个上界(下界)如果对M中任意元素m,都有m≤a(a≤m)

4)对于A中的子集M,A中元素a称为M的一个最小上界(或称上确界),如果a是M的一个上界,并且对M的任意一个上界X,都有a≤x。

(5)对于A中的子集M,A中元素a称为M的一个最大下界(或称下确界),如果a是M的一个下界,并且对M的任意一个下界x,都有x≤a。

例:

        sup{a,b}=a和b的最小公倍

        inf{a,b}=a和b的最高公因。

子格定义:设(L,≤)是格,S属于L,如果(S,≤)是格,则称(S,≤)是格(L,≤)的子格。

代数格:

定义:

设L是一个集合,*、+是L上两个二元代数运算,如果这两种运算对于L中元素满足:

(1)交换律(2)结合律(3)吸收律

.则称此代数系统(L,*,+)为一个格。

这里的*是求最大公因数,+是求最小公倍数

推论:

格是由加法交换半群和乘法交换半群构成,满足幂等律

例:

设S是一个集合,p(S)是S的幂集合,于是(p(S),∩,U)是一个代数格。

证明由交换,结合和吸收律三个方面下手

交换律:a∩b=b ∩a   aUb=bUa

结合律:a∩(b∩c)=(a∩b)∩c  aU(bUc)=(aUb)Uc

吸收律:a∩(aUb)=aU(a∩b)=a

设I+是所有正整数集合,两个正整数的最高公因*、最小公倍+。是I+上两个代数运算于是,(I+,*,+)是一个代数格。

证明如上

设n是一个正整数,Sn是n的所有正因数的集合,两个正整数的最高公因*、最小公倍+。 是Sn上两个代数运算,于是(Sn,*,+)是一个代数格。

显然运算满足封闭性

(Sn,*,+)是格(L,*,+)的子格的充要条件是:S属于L 且(S,*,+)是一个格。

(Sn,*,+)是(L,*,+)的代数子格,其中*、+分别是最高公因和最小公倍运算。

上面两种定义是等价的,inf{a,b}等价于其的最高公因数  ,sup{a,b}等价于求其的最小公倍数

定义A所定义的格和定义B所定义的格是等价的,亦即,一个半序格必是一个代数格;反之亦然。

但是一个代数格中的某些半序子格不一定是代数子格

性质:

半序格

代数格:

总结

.1设(L≤)是一个格,a、b是L中任意元素,于是a<=b <->  a*b=a <-> a+ b=b.

.2 设(L,≤)是一个格,a、b、c是L中任意元素:如果b<=c,则有a*b<=a*c,a+ b<=a+ c.

.3 设(L,≤)是一个格,a、b、c是L中任意元素:于是有

                a+(b*c)<=(a+ b)x(a+c)

                a*(b+c)>=(a*b)+(a*c)

        其中关系“>=”是关系“<=”的对偶关系在一般格中,分配律不是总成立的,但上述分配不等式总是成立的。

.4 设(L,≤)是一个格,a、b、c是L中任意元素于是有 (*)

                a<=b  <-> a+(b*c)<=b*(a+ c)

格的同态和同构

定义:

设(L,*,+ )和(S,∧,V)是两个格,L到S内的映射g称为(L,*,+)到(S,∧,V)的格同态映射,如果对任意a、b属于L,都有

例:

格的同态像也是格

这格映射是保序的

格的同构:同态且双射

.6 设(L,*,+)是一个格,g是此格的自同态映射,于是g(L)是(L,*,+)的(代数)子格

.7 设(L,*,+)、(S,∧,V)是两个格,若g是L到S上的同构映射,则g的逆映射g^-1是S到L上的同构映射。

n维格:

先证明同态:满足两个运算的性质

再证明满射,根据数量关系和格的封闭性就可以证明出满射和单射

内容概要:本文介绍了多种开发者工具及其对开发效率的提升作用。首先,介绍了两款集成开发环境(IDE):IntelliJ IDEA 以其智能代码补全、强大的调试工具和项目管理功能适用于Java开发者;VS Code 则凭借轻量级和多种编程语言的插件支持成为前端开发者的常用工具。其次,提到了基于 GPT-4 的智能代码生成工具 Cursor,它通过对话式编程显著提高了开发效率。接着,阐述了版本控制系统 Git 的重要性,包括记录代码修改、分支管理和协作功能。然后,介绍了 Postman 作为 API 全生命周期管理工具,可创建、测试和文档化 API,缩短前后端联调时间。再者,提到 SonarQube 这款代码质量管理工具,能自动扫描代码并检测潜在的质量问题。还介绍了 Docker 容器化工具,通过定义应用的运行环境和依赖,确保环境一致性。最后,提及了线上诊断工具 Arthas 和性能调优工具 JProfiler,分别用于生产环境排障和性能优化。 适合人群:所有希望提高开发效率的程员,尤其是有一定开发经验的软件工程师和技术团队。 使用场景及目标:①选择合适的 IDE 提升编码速度和代码质量;②利用 AI 编程助手加快开发进程;③通过 Git 实现高效的版本控制和团队协作;④使用 Postman 管理 API 的全生命周期;⑤借助 SonarQube 提高代码质量;⑥采用 Docker 实现环境一致性;⑦运用 Arthas 和 JProfiler 进行线上诊断和性能调优。 阅读建议:根据个人或团队的需求选择适合的工具,深入理解每种工具的功能特点,并在实际开发中不断实践和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值