总看到这个。其实,30岁失业的程序员究竟有多少,当你知道数据的时候,你就会泪哭。。。
很显然,现在游戏开发以及传统的程序员已经不吃香了,这不现在刚看到一知友同样31岁,2017年毕业就Unity开发到现在,不经不觉8年了,一直从事于数字孪生行业,后来公司裁员,到后面无奈去了自动化工厂,去做上位机开发了
如今每天就是根据流水设备与现场PLC、数据库进行逻辑上的控制与数据交换工作,每天很累上班10个小时才能拿到全薪,而且没有一金以及上班6天,偶然出差要1~2个月,驻扎在现场,害,感觉就很累,几乎没有个人时间。
而且最近几年不像前些年,很多人都在尝试这一块游戏,不过95%在尝试中其实也就一万露头的工资,有些还是几千块钱
其实如果技术真到那一步了,各行业就都一样了,大家都看清了依据ai技术后各行各业的专业壁垒土崩瓦解,医法的从业难度被ai拉到和其他大部分专业差不多的难度,到时候的工作没准可能是各种各样的公务员
我就是程序员,目前行业确实不景气,但是AI淘汰程序员,那必然也会淘汰项目经理,美工,甚至厂里的很多技术员,我一开始真不信AI能写代码就不会写机器的执行逻辑,知道后来发现,那些有点AI大模型知识的更受公司的喜爱,反而传统的开发面试常常碰壁,想到再过个里面,大家都要死,不如这个时候重新选择,说不定可以涅槃重生!
既然能看到未来,还不如提前规划一下,于是想着做点其他的,比如小游戏、网店、自媒体啥的,可能自己水平不够吧,全部都停留在PPT上,不敢去踏出这一步。
对于程序员,建议换个AI大模型赛道,这个要吃香的多了。。。
现在的AI已经很强咯。不像以前的AI上下文能力有限,不会给出最优解,而是能跑而已。复杂业务逻辑理解虽然有些瑕疵,不过现在的版本是越来越好用了
我敢打赌,明年AI普及率就会超过微信,并且会很快的,新的语音大模型,加上应用场景,普及率不愁的。
无论是普通私企,央国企,事业单位,本地部署大模型都变成了标配,有些公司自己会买gpu那种,自己运行那种,有些是接入和训练自己的大模型,有些调用API…
比如最近的DeepSeek的开源了,各大大模型都在争抢着研究DeepSeek的开源框架,底层算法,来为自己的模型产品进行优化,当你打开网站的时候的时候
你就会发现,大模型已经被很多大厂杀风了,腾讯和小米都给出了起步价30k的offer,就连一些普通的小厂,一年的开发经验就能给出20k的offer,让普通的开发者羡慕嫉妒恨…
不过,我告诉你,只要你稍微一点python基础,人人都可以入局这个赛道的,不仅仅是是一个职业,更对自己以后的工作,副业,职场以及后续的人生中都是一个竞争力
而现在大模型开发不仅仅就是调用一下openai 的接口,学习训练大模型也不单单是教你写点调试词
什么ai agent? 什么arg?就是在一个叫做dify*的网站上面点击各种按钮。
这些都不是真正的大模型开,真的能学习到大模型的知识必须是这样的:
用几个周的时间从主流大模型如DeepSeek从0到1的学会了大模型的底层逻辑有,和算法,并且还能学会到必备的大模型知识体系,再到典型业务场景和技术架构的专业解析, 构建自己的技术壁垒,调优,预训练技术、RLHF、模型压缩、多模态融合、Engineering交互工程…等技术,直接上车,进阶职场大模型之旅,不要在犹豫了:
我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
9周快速成为大模型工程师
第1周:基础入门
-
了解大模型基本概念与发展历程
-
学习Python编程基础与PyTorch/TensorFlow框架
-
掌握Transformer架构核心原理
-
第2周:数据处理与训练
-
学习数据清洗、标注与增强技术
-
掌握分布式训练与混合精度训练方法
-
实践小规模模型微调(如BERT/GPT-2)
第3周:模型架构深入
-
分析LLaMA、GPT等主流大模型结构
-
学习注意力机制优化技巧(如Flash Attention)
-
理解模型并行与流水线并行技术
第4周:预训练与微调
-
掌握全参数预训练与LoRA/QLoRA等高效微调方法
-
学习Prompt Engineering与指令微调
-
实践领域适配(如医疗/金融场景)
第5周:推理优化
-
学习模型量化(INT8/FP16)与剪枝技术
-
掌握vLLM/TensorRT等推理加速工具
-
部署模型到生产环境(FastAPI/Docker)
第6周:应用开发 - 构建RAG(检索增强生成)系统
-
开发Agent类应用(如AutoGPT)
-
实践多模态模型(如CLIP/Whisper)
第7周:安全与评估
-
学习大模型安全与对齐技术
-
掌握评估指标(BLEU/ROUGE/人工评测)
-
分析幻觉、偏见等常见问题
第8周:行业实战 - 参与Kaggle/天池大模型竞赛
- 复现最新论文(如Mixtral/Gemma)
- 企业级项目实战(客服/代码生成等)
第9周:前沿拓展
- 学习MoE、Long Context等前沿技术
- 探索AI Infra与MLOps体系
- 制定个人技术发展路线图
👉福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
不仅是理论,还有真实的案例,有很多只要用学习到的大模型玩出了新花样。
比我厉害的一个同事经历,他和朋友们配合专属游戏的大模型做了个修仙游戏,月收益一百多万。独立后又做了两个精品游戏,入不敷出。现在靠修仙游戏维持,最近在往steam上尝试。
因为程序员离着AI更近,更容易接受和折腾,比如用GPU卡做点什么,跑模型之外,还要有点成果,就有了MCP,Agent,以及KT,微调这些
如果你对做小游戏来说,技术足够了,一个人做的话,必须要学会学会AI
AI是需要人才的,门槛高,普通AI就是目前比较弱智,一旦有一个强力的AI产品,获益的面就会更广,赢家通吃的结果。
IT软件工程师的门槛低,而且只要有个不错的软件诞生,就能改变生产力,能有很多赢家,并不是一个赢家,所以这种状况就导致,IT其实是个多玩家参与的基建,类似土木,所以IT又叫赛博基建。
当然AI也是类似基建的东西,但建设的参与方少,也属于赛博基建。跟AI很像的另一个赛博基建是通信基建,赢家通吃。
现在的AI已经很强大了,我觉得去年发展进度已经很快了,从Claude3.5后,各种ai产品已经变得能用了,最火的就是 cursor,现在程序员几乎人手一个,关键是开发cursor的人也在用cursor,也算是ai加速开始ai了,看看现在的很多学外语软件都内置了AI。
可能一般人理解的ai就是画个美女图啥的,但ai本质是计算,随便翻开一本深度学习的书,都知道ai能发挥作用的领域太多了。至少google的ai精准探测蛋白质结构,让一群靠依赖重复劳动苦力发文章的立马失去作用,比如颜宁的团队。
其实,能真正用好AI的只有程序员。未来的程序员可能更多侧重需求定位和指标设计了,以及后端的各种测评了,通过Ai开发工作效率会大大提高。
我觉得应该担心的是完全不懂编程的业务人员。培养一个有技术背景的业务人员,让IT驱动业务才是最高收益率的事情。
i开发工作效率会大大提高。
我觉得应该担心的是完全不懂编程的业务人员。培养一个有技术背景的业务人员,让IT驱动业务才是最高收益率的事情。
总之,为什么我劝你加入AI赛道?那是因为在我身边,AI需求一直是不缺的,圈内也有很多个人和工作室依靠这些需求活的很滋润,有时候真的是羡慕死了……