cursor的mcp服务器安装(nodejs,npx安装和uv工具安装)

一、前言:

1、近期MCP服务器非常火爆,作为LLM大模型的通用工具手脚,MCP可以帮助LLM大模型实现更好的功能。本人经常使用cursor来进行代码的编辑,正巧cursor在0.47版本之后,MCP的相关设置进行了大更新,那么就来尝试一下吧。

二、MCP服务器的支持

MCP服务器的支持可以选择NodeJS的支持,所以需要先整理安装NodeJS。具体可以参考这篇博文:
nodejs安装
设置完环境变量之后,重启电脑,在终端输入

node -v 
npx -v

可以查询到版本号之后,就说明做好了前置工作了。

三、cursor当中使用nodejs进行MCP服务器的配置(以mcp_fetch_fetch为例子)

打开cursor,点击左上角的齿轮,然后选择MCP选择,点击 Add new global MCP server 来配置全局的MCP服务器
之后会打开一个mcp.json文件。我们在里面进行配置即可。
常见的MCP服务器整合网站有:
https://mcp.so/
https://smithery.ai/
这里我们选择 https://smithery.ai/ ,挑选即可MCP服务器来进行尝试。
登录之后选择一个mcp服务器,然后选择图上的配置信息,选择Windows的Json进行复制

将复制的Json文本粘贴到mcp.json当中:

之后退回到Cursor Settings的MCP选择,检查服务器是否启动成功

只要显示绿色,并且启动(Enable),说明MCP服务器就已经启动了。

之后可以在cursor的agent模式下面,通过自然语言来要求ai来调用工具:

四、cursor当中使用uv进行MCP服务器的配置(以mcp_fetch_fetch为例子)

如果你的nodejs安装的服务器出现问题了,那么可以选择使用nv,是一个用于 Python 项目的快速的包安装器和解析器。
首先先让我们安装uv,在终端输入:

https://astral.sh/uv/install.ps1

之后终端当中会进行包的安装,最后可以在路径

C:\Users\Admin\.local\bin

下面得到uv.exe和uvx.exe文件

安装好之后记得将路径“C:\Users\Admin.local\bin”放到用户变量的path当中:

之后重启电脑,让环境变量生效。

我们打开cursor的mcp.json,然后进行响应的配置,将执行器切换为uv,按照uv的方式写入json字符串,具体写入的参数可以工具官方的github说明文档,比如:
https://github.com/modelcontextprotocol/servers/tree/main/src/fetch

重新检查,发现mcp服务器启动成功了:

五、可能存在的问题

  1. 如果cursor服务器启动失败,可以尝试重启cursor
  2. uv安装失败,尝试使用vpn,或者使用国内源

零基础如何高效学习大模型?

你是否懂 AI,是否具备利用大模型去开发应用能力,是否能够对大模型进行调优,将会是决定自己职业前景的重要参数。

为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和鲁为民博士系统梳理大模型学习脉络,这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️

在这里插入图片描述

【大模型全套视频教程】

教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。

从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。

同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!

在这里插入图片描述

深耕 AI 领域技术专家带你快速入门大模型

跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!

图片

【精选AI大模型权威PDF书籍/教程】

精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。

在这里插入图片描述

【AI 大模型面试题 】

除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。

【大厂 AI 岗位面经分享(92份)】

图片

【AI 大模型面试真题(102 道)】

图片

【LLMs 面试真题(97 道)】

图片

【640套 AI 大模型行业研究报告】

在这里插入图片描述

【AI大模型完整版学习路线图(2025版)】

明确学习方向,2025年 AI 要学什么,这一张图就够了!

img

👇👇点击下方卡片链接免费领取全部内容👇👇

在这里插入图片描述

抓住AI浪潮,重塑职业未来!

科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。

行业趋势洞察:

  • 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
  • 人才争夺战: 拥有3-5年经验、扎实AI技术功底真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
  • 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。

与其观望,不如行动!

面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。

在这里插入图片描述

01 为什么分享这份学习资料?

当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。

因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!

我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。

*02 这份资料的价值在哪里?*

专业背书,系统构建:

  • 本资料由我与鲁为民博士共同整理。鲁博士拥有清华大学学士美国加州理工学院博士学位,在人工智能领域造诣深厚:

    • 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇
    • 拥有多项中美发明专利。
    • 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
  • 目前,我有幸与鲁博士共同进行人工智能相关研究。

在这里插入图片描述

内容实用,循序渐进:

  • 资料体系化覆盖了从基础概念入门核心技术进阶的知识点。

  • 包含丰富的视频教程实战项目案例,强调动手实践能力。

  • 无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考助力你提升技术能力,向大模型相关岗位转型发展

    在这里插入图片描述在这里插入图片描述在这里插入图片描述

抓住机遇,开启你的AI学习之旅!

在这里插入图片描述

<think>好的,用户问的是Cursor是否支持自动化MCP服务器的创建与安装。首先,我需要明确用户提到的MCP服务器具体指什么。因为“MCP”这个缩写可能有多种含义,比如在IT领域常见的可能有: 1. **Minecraft服务器(Minecraft Server)**:有些社区可能会用MCP(Minecraft Coder Pack)来指代相关的服务器工具。 2. **Multi-Cloud Platform**:多云管理平台。 3. **Mobile Content Provider**:移动内容提供商。 4. **Management Control Plane**:管理控制平面。 5. **其他特定领域的专有名词**:比如某些企业内部系统。 接下来,我需要考虑Cursor这个工具的功能。Cursor是一个基于AI的代码编辑器,支持智能补全、代码生成、问题解答等功能,类似于VS Code的增强版。它的主要能力集中在代码编写自动化任务处理上,比如生成脚本、自动化部署等。 假设用户指的是Minecraft服务器的自动化创建与安装,那么需要分析Cursor是否能够生成相关脚本或配置。例如,通过询问用户需求,生成Dockerfile、Shell脚本或者Ansible Playbook等自动化部署文件。这种情况下,Cursor是有能力辅助用户编写自动化脚本的,但需要用户提供具体的技术栈需求细节。 如果MCP指的是其他类型的服务器,比如多云管理平台,那么可能需要集成特定的云服务API(如AWS、Azure、GCP等)。Cursor本身并不直接提供服务器创建的接口,但可以通过生成调用云平台API的代码(如Python脚本使用boto3库操作AWS)来间接实现自动化。这同样需要用户明确具体的技术要求目标平台。 接下来,我需要验证这些思路是否正确。查阅Cursor的官方文档或社区资源,确认是否有直接支持MCP服务器自动化的功能。如果官方没有明确说明,那么结论是Cursor不直接支持,但可以通过生成代码脚本间接实现。 另外,用户可能对“自动化”的理解有不同层次。例如,是否希望完全一键部署,还是通过生成的脚本手动执行。需要明确用户的需求层次,提供相应的解决方案。 最后,总结回答时需要分情况讨论,给出不同可能性下的解决方案,并建议用户提供更多细节以便更精确的帮助。同时,保持回答的结构清晰,步骤明确,符合用户可见层的要求。</think>关于CursorMCP服务器自动化创建与安装的支持,需要分以下三个层面进行说明: $$注意:MCP在不同领域有不同解释,本回答默认指向IT基础设施中的服务器部署场景$$ 一、核心能力匹配 1. Cursor作为AI增强型代码编辑器 - 原生不具备直接操作服务器的API接口 - 擅长生成自动化脚本代码(Python/Shell/PowerShell等) - 支持通过代码生成实现间接自动化 二、技术实现路径 1. 自动化脚本生成示例: ```python # Cursor生成的AWS EC2实例创建脚本示例 import boto3 ec2 = boto3.resource('ec2') instance = ec2.create_instances( ImageId='ami-0abcdef1234567890', MinCount=1, MaxCount=1, InstanceType='t2.micro', KeyName='your-key-pair' ) ``` 2. 支持主流技术栈: - 云服务API调用(AWS/Azure/GCP) - Ansible/Terraform模板生成 - Docker/Kubernetes配置文件 - SSH自动化连接脚本 三、最佳实践建议 1. 明确具体需求: - 目标平台(物理机/虚拟机/云服务器) - 认证方式(API密钥/SSH证书) - 配置规格(CPU/内存/存储) 2. 推荐工作流: $$需求分析 \rightarrow 代码生成 \rightarrow 人工验证 \rightarrow 自动化执行$$ 如需进一步帮助,请提供: 1. 具体的MCP服务器定义 2. 目标部署环境类型 3. 现有技术栈信息 (本回答基于Cursor v0.9.9版本功能,实际支持度可能随版本更新变化)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值