摘要:Dify 作为一款开源的大语言模型应用开发平台,集成了聊天助手、Chatflow 等核心功能,助力开发者高效构建生成式 AI 应用。其中,聊天助手是基于 Dify 平台开发的智能对话应用,能够理解和处理自然语言;Chatflow 则是用于构建对话流程的工具,通过可视化界面以图形化方式设计聊天机器人的对话逻辑。看起来都是对话助手,但是后台的处理逻辑不一样,导致结果很不一样。本文来介绍它们的区别,大家也好在使用的时候进行正确的选择
-
Chatflow和聊天助手两者原理的区别
-
Chatflow和聊天助手在界面上配置的区别
01 Chatflow和聊天助手两者原理的区别
当我们打开dify的时候,我们可以看到有聊天助手和chatflow 两个选项,大家可能会觉得有点奇怪,他们有什么区别了?
他们在应用定位、功能特性、交互流程和开发部署上都有一定的区别。
应用定位
聊天助手:直接面向用户,核心功能是解答问题、提供信息和服务,旨在满足用户在各种场景下的即时交互需求,如智能客服解答常见问题、知识问答提供各类信息等,强调快速、准确地响应用户提问,提供清晰有用的回复。例如,用户向电商平台的聊天助手咨询某商品是否有货、价格多少,助手直接给出答案。
Chatflow:侧重于构建对话流程,为对话式应用搭建逻辑框架,是一种实现多轮对话、智能引导和条件判断功能的工具。 它并非独立的终端应用,而是用于支撑聊天机器人等对话式产品的开发,通过设计复杂的对话流程,提升用户交互体验。比如,在设计智能客服流程时,Chatflow 可设定先验证用户身份,再根据用户咨询类别引导至不同解答路径。
功能特性
聊天助手:以知识库为信息源,依据用户问题检索并结合自身能力生成回答。主要围绕信息查询、知识问答、任务执行(如简单的日程安排)等功能展开,注重单一问题的解决效率。 例如,用户询问 “北京明天天气如何”,聊天助手迅速调用天气信息接口获取数据并回复。
Chatflow:在对话流程中借助 “知识检索” 等节点,按逻辑从知识库获取信息以回复用户。支持多轮对话,能根据用户前序回答调整后续提问或回复,实现复杂的对话逻辑。 例如,在法律咨询场景,Chatflow 先询问案件大致类型,再针对具体类型逐步询问细节,最后给出综合法律建议。
交互流程
聊天助手:交互相对简单直接,用户提出问题,助手理解问题后给出答案,通常是一问一答模式,虽也可多轮交互,但逻辑较为松散。 例如,用户询问 “推荐一部科幻电影”,助手回复电影名后,若用户再问 “主演是谁”,助手将其视为新问题独立回答。
Chatflow:强调有计划、有逻辑的多轮交互,整个对话过程遵循预先设计的流程。 例如,在教育辅导场景,Chatflow 先评估学生学习水平,再根据结果推荐合适课程,接着询问学生学习时间安排,最后给出个性化学习计划,各环节紧密相连,上下文关联紧密。
开发与部署
聊天助手: 开发侧重于模型选择与训练、知识库构建与维护,以及对常见问题的梳理和优化回答。部署后可快速接入各类渠道,如网站、APP 等,为用户提供服务,对开发人员技术要求相对集中在 AI 模型和自然语言处理方面。
Chatflow:开发重点在于设计对话流程,包括节点设置、条件判断、信息传递等,需综合考虑业务逻辑和用户体验。 部署时需与其他组件(如聊天界面、数据存储)协同工作,对开发人员的业务理解能力和系统设计能力有较高要求。
02 Chatflow和聊天助手在界面上配置的区别
聊天助手配置
如上图所示,聊天助手就是使用提示词从知识库获取相关的内容后返回,简单的一问一答模式,没有相关的记忆功能。
chatflow助手配置
如图所示,大模型可以从知识库检索的内容作为大模型的输出的上下文,关键是它还有记忆功能。
这里可以调整它默认记忆的多少个来回的对话内容,这里也可以说明为什么聊天助手不能基于上个问题回答,而chatflow是可以的,这里的记忆功能表示聊天的内容它存储起来,再次问答的时候,这部分聊天的背景也是会发送给大模型思考和推理。
这里还有异常重试和异常处理的逻辑。当然chatflow还可以添加其它节点和工具,对应的功能就比聊天助手丰富很多,聊天助手只能获取知识库的内容,而chatflow还可以添加其它节点和工具,实现更为复杂的逻辑。
基于以上的分析,大家在选择聊天助手和chatflow的时候就更加清楚如何选择了。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发