硕士校招生进入大模型领域工作,选预训练还是SFT?

我推荐选 pretrain,理由如下:

pretrain 提高工程能力,sft 提高认知能力

作为校招新人,你的当务之急只有一条:提升工程代码能力!我们拆解一下两个团队所需要的技能,你判断下哪个提升代码能力更快。

在 pretrain 团队,你的必修课有:爬取互联网数据,大规模数据清洗与去重(hadoop、spark等),配置各种 torch 和 cuda 环境,搞懂、修改、优化 megatron 的代码,熟练 debug 多机通讯报错,成熟的炼丹技巧(数据配比,学习率,优化器,课程学习,分析 loss 曲线、scaling_law),跑通各 benchmark 验证模型能力;

在 sft 团队,训练框架和炼丹技巧只属于选修课,往往公司不给你时间学习,你的必修课大概只包含以下内容:手动标数据,用 gpt4 标数据,教会标注人员标数据,利用用户反馈标数据,根据实验结果优化数据,参考论文去合成数据。

pretrain 转 sft 的难度,小于 sft 转 pretrain 的难度

基于两个方向的必修课不一样,pretrain 团队的同学能轻松上手 sft 的工作,sft 团队的同学则不能快速接手 pretrain 的工作。毕竟,两个团队核心技术不同:

  • pretrain 的核心技术:训练代码
  • sft 的核心技术:训练数据

所以,当你从 pretrain 转去做 sft,花一天时间看一下训练数据,就可以开始干活了;但当你从 sft 转去做 pretrain,你可能得花两周时间学习 megatron,才能开始干活。

pretrain 的杂活比 sft 的杂活更能锻炼新人

前面列举了两个方向的工作内容,假设你作为新人只配去做数据工作这种杂活,那我们就再来仔细看下两个团队的杂活都是什么?

  • pretrain 的杂活是从海量较脏的互联网数据中清洗出有意义的、干净的训练数据。大概包括:训个小模型给数据打分,写大量规则去除网页文档里的垃圾语料,研究某个 domain 数据的数据特征并想办法过滤该 domain 数据;
  • sft 的杂活大概是:手动标数据,不断拿 GPT4 试出效果最好的 prompt 来标数据。

言尽于此,哪个杂活更能锻炼人我就不再分析了。

新人应该选最难的工作

pretrain 方向的最大痛点是什么?

短期内没有收益、长期训不过 llama、qwen,老板会选择拥抱开源。但是,你是校招新人,他不敢裁你。趁着你有“校招生”这个护身符,去做最难的工作、快速成长自己,丰满羽翼,有社会舆论和国家政策保护在,你只要别乱执行 rm -rf *,就都是安全的。

再过三两年,可能你就不能选有技术的活,而只能选有收益的活了。


我并没有说 sft 都是标数据的没意义的工作,我曾在另一个回答中力挺 sft 是有技术含量的。我只不过是认为,pretrain 能快速提升工程能力,这对新人非常可贵。成熟一点的程序员,写 hadoop、训 BERT 已经玩得滚瓜烂熟了,多跑一些 sft,找一找大模型的 feel 非常重要,但新人只需要去学习扎实的基本功。

很多人都说,新人只会被分配去打杂,与其去 pretrain 洗数据,不如去 sft 拿收益。但是,孟母三迁的故事并没有过时,人是有眼有腿的啊,可以主动去学习的,在 pretrain 团队,老板不让你做 scaling_law,但是总不能不让你看 scaling_law 的 wiki 吧,总不能不让你请教同事吧。(这段话同样说给选 sft 工作的新人,我们是可以主动去选择学习 pretrain 相关的知识的,不要被工作内容桎梏了眼界和学习范围

不管选择哪个团队,记得抱紧大佬同事大腿,多学多问,“喊声爸爸,换一份 megatron 的训练代码与教程”,这买卖不亏,我就干过。

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 大模型预训练与监督微调 #### 预训练阶段 大型语言模型的预训练通常采用自回归或自编码的方式完成。例如,GPT系列模型通过单向的语言建模目标来学习文本表示[^1]。这意味着,在给定前一部分文字的情况下,模型能够预测后续的文字内容。这种机制使得GPT模型能够在大规模无标注数据上进行有效的预训练。 相比之下,其他类型的预训练方法可能涉及掩码语言建模(Masked Language Modeling, MLM)。这种方法通过对输入序列中的某些词进行随机遮蔽并让模型预测这些被遮蔽的部分,从而增强其双向上下文理解能力[^3]。 #### 监督微调(Supervised Fine-Tuning) 在完成了基础的大规模预训练之后,为了使模型适应特定的任务需求或者领域特性,可以对其进行有监督的学习调整——即所谓的监督微调(Supervised Fine-Tuning, SFT)[^2]。在此过程中,利用带有标签的小样本集进一步优化网络参数,以便更好地解决实际应用场景下的问题。 下面是一个简单的Python代码示例展示如何加载预训练好的transformer模型,并执行分类任务上的finetune操作: ```python from transformers import BertForSequenceClassification, AdamW, BertTokenizerFast import torch # 加载预训练Bert模型和分词工具 model_name = 'bert-base-uncased' tokenizer = BertTokenizerFast.from_pretrained(model_name) model = BertForSequenceClassification.from_pretrained(model_name) optimizer = AdamW(model.parameters(), lr=5e-5) def train_step(input_ids, attention_mask, labels): outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) loss = outputs.loss loss.backward() optimizer.step() # 假设我们已经有了tokenized_inputs以及对应的label列表 for epoch in range(num_epochs): for batch in dataloader: input_ids = batch['input_ids'] attention_mask = batch['attention_mask'] labels = batch['labels'] train_step(input_ids, attention_mask, labels) ``` 上述脚本展示了基于HuggingFace库实现的一个基本流程:先初始化所需组件;接着定义损失函数计算方式;最后迭代整个训练过程直至收敛为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值