最近我和一个律师亲戚聊AI时,问了我应该怎么对现在律师事务所庞大的文档做AI检索,从技术上讲用现在的LLM+RAG可以满足需求,但细想不太对劲,因为这里面涉及到很多专业知识,还有律师的专有思维路径,一个不懂律师业务的程序员肯定是做不好的,于是有幸跟他们合伙人进行了深入沟通,合伙人说了一堆但我总结下来就这么一句话
“一个能回答我们所有文档相关问题的工具”。
比如:1)描述法庭上发生的事件,2)提供某个案件的最新进展,3)列出案件的时间线。
要知道,这可是家律师事务所,工具得处理海量的客户机密信息、法律诉讼资料等等,所以隐私和(尤其是)hallucinations(幻觉)是两个大难题。他们最初的想法是把所有数据塞进ChatGPT然后问问题,但这显然不行,因为完全没法解决隐私和准确性的问题。这个项目几周前交给我,我觉得自己做出来的东西还不错,成本也不高。这是一个RAG系统,能把扫描的法律文件分块、嵌入到本地的FAISS索引中,在查询时做最近邻检索,把排名靠前的、带引用的上下文喂给Claude,生成事实准确、带来源的答案,而且所有数据从没离开过事务所的网络。
我想分享一下这个经验,给你点灵感,如果你也在搞类似的项目,希望能帮到你。
为什么不直接使用LLM
把事务所的整个文档库直接丢进像ChatGPT/Deepseek这样的现成LLM显然很糟糕。主要问题有:
保密性:文档库里有密封证据、客户ID、医疗记录和特权策略备忘录。把这些推送到外部API会违反NDA,在我们国家还可能被制裁(同事告诉我的)。本地微调模型会安全点,但也得有严格的加密存储保障。通用云LLM啥都保证不了。
Hallucinations(幻觉):LLM是概率序列生成器,生成的是“看起来对”的文本,不是“真对”的文本。在法庭上,一个捏造的引用可能毁掉一个案子。我们需要事实准确、带逐行出处的答案,基础模型没检索层和引用检查压根做不到。
Token限制:我们的语料库大概1TB,OCR和预处理后分成约100万个chunk。即使是“扩展上下文”的模型,也最多支持200k token——大概10份中等长度的诉状。直接用LLM要么得超级粗糙地总结,要么随机采样,必然漏掉关键事实。
输入杂乱:大部分证据是扫描的TIFF文件,邮件多是西班牙语或法语的法律术语。现成的LLM在干净网页文本上训练,面对OCR噪声和专业术语会翻车。得有预处理、双语嵌入和逐chunk的质量评分。
延迟:把兆字节的上下文塞进LLM,推理时间得飙到几秒,账单也可能几美元一次。本地向量搜索+针对性生成能把p95延迟控制在120ms左右,Claude的成本压到每次$0.02以下。
可审计性:每个答案都得在几个月后还能重现。原始LLM输出会随模型更新和temperature变化而漂移;带冻结嵌入和版本固定的prompt的RAG管道能提供可靠的审计追踪。
总结:普通LLM适合头脑风暴,但在律所的生产环境中,合规性差、成本高。我们需要带硬性隐私保证、确定性引用逻辑和低延迟的RAG系统,所以有了下面的架构。
系统架构
文档摄入
一个watcher脚本监控安全网络共享,记录每个新文件到一个只追加日志。对于每个文件d_i,我们计算:
sha256(d_i) → 主键
同时捕获元数据(case_id, MIME, timestamp)。先存哈希能去重,避免重复OCR,还能提供不依赖文件名的审计追踪。
OCR与解析
根据MIME类型分流:
-
• 有文本层的PDF,用pdfplumber逐页提取。
-
• 扫描件/TIFF/PNG,用Tesseract的--psm 4“稀疏文本”模型,带自定义语言白名单[eng,spa,fre]。
每个页面返回纯UTF-8文本+边界框JSON;JSON不离开内网,但支持后续高亮渲染,保护隐私。
文本分块
页面用滑动窗口切分:
window_size = 1_024 # 字节
overlap = 0.10 # 10%
每个chunk c_j生成一条记录:
{
"doc_id": sha256(d_i),
"page": p,
"offset": byte_start,
"text": <1024-byte string>
}
为什么用字节而非token?字节窗口“lexer无关”,更灵活,OCR噪声不会让chunk数量爆炸。实际平均每页约8个chunk。
嵌入
用在英/西/法语法律语句上微调的‘tri-lingual’ MiniLM(all-MiniLM-L6-v2)生成嵌入:
e = φ(text) ∈ ℝ^n # n是向量长度
e ← e / ||e||₂ # 单位归一化,cosine = dot
向量长度得让索引够小,n = 350是个好选择;100万个chunk占约2.7GB RAM,保留>0.86的平均cosine相似度。
向量数据库
嵌入存到FAISS IVF-PQ索引:
nlist = 256 # 粗聚类中心
pq_m = 8 # 子向量
pq_bits = 10 # 每子向量位数
nprobe = 8 # 每次查询探查的列表
这配置在单GPU上中位召回时间约18ms,RAM占用大幅减少。
k-NN搜索
对查询q,嵌入一次(e_q),执行:
S_k(q) = topk_cosine(e_q, k = 40)
丢弃相似度<0.20的候选,低于这个阈值答案质量会变差。若S_k为空,直接返回“无匹配证据”,省下Claude调用费用。
重新排序
用INT8量化的cross-encoder(mxbai-reranker-base)对S_k中的(q, c)对评分:
score = σ(W · BERT(q, c) + b)
保留前10个最高分。量化大幅降低CPU推理时间。
提示构建
用严格模板拼接10个chunk:
<SYSTEM>
You are an expert paralegal...
</SYSTEM>
<CONTEXT>
[doc:a5f9…:p12] …chunk text…
[doc:c1b3…:p 3] …chunk text…
…
</CONTEXT>
<USER> {original question} </USER>
提示大小控制在15kB以下,留出512 token的回答空间,避开Claude 32k上下文上限。
LLM调用
用temperature=0.0(完全确定性)和max_tokens=512调用Claude-3-Opus。按当前定价和平均上下文长度,每次调用约$0.018,耗时约90ms。
引用检查
生成后进行两项检查:
-
• Regex:每句必须以"[doc:page]"结尾。
-
• 编辑距离:每个引用的Levenshtein(sentence, cited_chunk) ≤ 10,防止paraphrase幻觉。
若任一检查失败,返回“Insufficient context”。通过则带引用交付答案。所有原始文本留在隔离VLAN,输出可追溯到磁盘上的chunk。
组件详解与设计选择
文档摄入与去重
每个文件进入“new-evidence”共享后通过watcher脚本处理:
-
1. 计算原始字节的sha256哈希作为主键,避免文件名变化影响。
-
2. 捕获不可变元数据,存到只追加的SQLite日志。
-
3. 去重:若哈希已存在,跳过OCR,节省时间。
-
4. 队列文件给下游OCR/解析。
日志状态是语料库字节内容的确定性函数,方便后续审计。
OCR与解析
新文件交给OCR工作池,按MIME快速分流。页面对象包含:
{
"pk": <sha256>,
"page_no": 17,
"mime": "application/pdf",
"text": "...plain UTF-8...",
"bbox_json":[...],
"lang": "spa",
"ocr_conf":0.93
}
保留bbox_json方便UI高亮引用行。若ocr_conf<0.60,标记页面需人工QA,跳过嵌入,减少垃圾token。
文本分块与窗口几何
页面文本切成固定大小、带重叠的窗口:
WINDOW_BYTES = 1_024
OVERLAP_PCT = 0.10
for each page_text:
i = 0
while i < len(page_text):
chunk = page_text[i : i + WINDOW_BYTES]
emit({
"doc_id": sha256(file_bytes),
"page": page_number,
"offset": i,
"text": chunk
})
i += int(WINDOW_BYTES * (1 - OVERLAP_PCT))
用字节窗口避免OCR噪声导致chunk数量不稳定。1024B大小能装两段文本,适合“接下来发生了什么”类问题。
嵌入
用微调的MiniLM编码器处理chunk,生成n=350维向量,归一化后cosine相似度即点积。100万个chunk占2.7GB RAM,保持>0.86的cosine相似度。
向量索引
嵌入存到FAISS IVF-PQ索引,配置如上。相比平坦索引,IVF-PQ内存占用从11GB降到2.7GB,查询时间从70ms降到<20ms,冷启动<3s。
k-NN检索
查询嵌入后,取top 40相似chunk,丢弃相似度<0.20的,减少噪声。FAISS单GPU流处理,p95延迟<30ms。
重新排序
40个候选用INT8 cross-encoder重新评分,保留top 10,约10kB,适合Claude 32k上下文。
提示构建
用固定模板拼接:
SYSTEM_MSG = (
"You are an expert paralegal. "
"Answer strictly from the context and cite every factual claim "
"as [doc_id:page]. If the context is insufficient, reply "
"\"Insufficient grounded context.\""
)
前置guardrails和chunk前缀引用降低幻觉,便于regex检查。
LLM调用
用Claude-3-Opus,temperature=0.0,max_tokens=512,确保确定性和审计可追溯。每次调用约$0.018,90ms。
引用检查
两项快速检查:
CITE_RE = re.compile(r"\[[0-9a-f]{6}:\d+\]$")
LEV_THR = 10
-
• 每句需以"[abcdef:42]"结尾。
-
• 每个引用句与chunk的Levenshtein距离≤10。
失败返回“Insufficient context”,宁缺勿滥。
性能与成本
整个管道在16GB RAM下几乎瞬时。向量搜索18ms,cross-encoder 85ms,Claude调用90ms,引用检查<5ms。端到端p95延迟<200ms,每次查询约,50预算可支持2500次查询。
总结
我不是NLP专家,这套方案是我边查资料边试出来的。结果很快、很便宜,还没泄露过任何机密或捏造引用,我挺满意的。如果你有更好的方法,欢迎分享!希望这篇文章对你有用。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】