自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(519)
  • 收藏
  • 关注

原创 比扣子简单! Cline+MCP 快速打造Agent工作流: 实战案例解析_cline mcp

本文介绍了如何利用开源的MCP协议和Cline插件快速构建安全可控的个性化智能体。MCP协议通过标准化AI应用与大语言模型的连接方式,简化开发流程并保障数据安全;Cline插件则提供强大的人机协作开发环境。通过实战案例展示了两个智能体的创建过程:一个用于下载YouTube视频解说词,另一个用于生成军事评论文章。这种方法相比传统智能体平台更具灵活性,开发者无需将敏感数据上传第三方服务器,即可实现本地化部署和功能扩展。该方案为商业化智能体开发提供了更安全高效的解决方案。

2025-07-28 11:29:58 535

原创 大模型书籍推荐:大模型黑书《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》(PDF版)_基于gpt-3,chatgpt,gpt-4等transformer架构的

Transformer技术实践指南 本书系统介绍了Transformer架构在NLP领域的应用,包括BERT、GPT等模型的原理与实践。重点内容涵盖:从零预训练RoBERTa模型;使用Hugging Face工具进行微调;处理机器翻译、文本摘要、问答等下游任务;对比GPT-3与T5/BERT的性能差异;探索计算机视觉扩展(ViT/CLIP/DALL-E)。书中包含TensorFlow/PyTorch实战案例,涉及情感分析、假新闻检测等技术应用,并详解ChatGPT/GPT-4的提示工程机制。通过13章技术讲

2025-07-28 11:20:13 645

原创 大模型LLM | 提升RAG系统性能的策略_rag性能提高

RAG模型原理与优化方案摘要 RAG(检索增强生成)模型通过"索引-检索-生成"三阶段工作:1)索引阶段清洗数据并分块,转换为向量存储;2)检索阶段匹配用户查询与向量块;3)生成阶段结合检索结果增强大模型输出。其优势在于动态更新外部数据源,无需重新训练模型。 优化方向: 索引优化:数据清洗、智能分块策略、嵌入模型选择(如BGE、Ada-002)、向量数据库选型(Faiss/Milvus等); 检索增强:调整ANN算法参数、结合元数据过滤、多索引混合搜索; 生成改进:优化Prompt模板设

2025-07-28 10:57:53 459

原创 月薪3W的AI产品经理学习路线,非常详细收藏我这一篇就够了!

高薪AI产品经理成长指南 成为月薪三万的AI产品经理需要系统化的培养路径,主要包括:1)夯实计算机科学和AI技术基础;2)掌握产品全生命周期管理能力;3)深入行业应用场景和技术前沿;4)培养领导力和创新思维。学习路线建议从Python编程、机器学习原理入手,逐步扩展到用户研究、商业分析和项目管理等核心技能。同时要重视实战经验积累,通过实习、竞赛和创业项目提升实践能力。零基础者可参考分阶段学习方案,从大模型系统设计到行业应用开发,最终掌握模型微调和多模态应用开发能力。配套学习资料包括面经宝典、应用案例集和商业

2025-07-22 10:29:36 717

原创 RAG 开发四大痛点及解决方案_ragflow解析很慢

本文探讨了RAG(检索增强生成)系统中的三大痛点及解决方案。知识缺失问题可通过优化数据质量(清除噪音、修正错误、去重)和提示词设计(引导模型承认不确定性)来解决。相关检索遗漏问题建议调整chunk_size和similarity_top_k参数,并采用Rerank重排序技术提升检索精确度。输出格式错误问题提出四种方案:优化提示词设计、输出解析方法、Pydantic程序框架以及OpenAI JSON模式,以确保响应符合指定格式要求。这些方法综合运用可显著提高RAG系统的可靠性、准确性和用户体验。

2025-07-22 10:27:40 829

原创 5分搞懂大模型 - RAG(检索、增强、生成)_rag增强检索技术

RAG(检索增强生成)技术解析与应用 RAG是一种结合信息检索与生成式AI的技术框架,通过外部知识库增强大语言模型(LLM)的生成能力,解决幻觉和知识陈旧问题。其核心流程分三步:检索(从向量数据库匹配相关文本)、增强(将检索结果融入Prompt)、生成(LLM输出精准回答)。技术架构包含双塔编码的检索模块(如FAISS)和基于LLM的生成模块(如GLM)。应用时需构建知识库(数据清洗、向量化)、设计检索策略,并融合上下文生成答案,适用于医疗、法律等专业领域问答系统。RAG显著提升了生成内容的准确性和时效性,

2025-07-22 10:21:05 574

原创 普通人如何抓住AI这个风口?别再观望,现在正是最好的时机!

普通人如何抓住AI这个风口?别再观望,现在正是最好的时机!在过去的几年里,“AI”这个词频繁出现在我们的视野中。从自动驾驶到智能客服,从AI绘画到AI写文章,再到最近爆火的大模型(LLM)和AI Agent,人工智能正在以前所未有的速度改变着我们的生活和工作方式。很多人开始意识到:AI不是未来,而是现在。但问题是——作为普通人,我们该如何抓住这波AI带来的机会?

2025-07-17 16:46:32 949

原创 DeepSeek+本地知识库:真的太香了_deepseek 本地知识库

本文介绍了两种基于DeepSeek大模型搭建本地知识库的方法。首选方案是使用Cherry Studio,通过配置本地Ollama服务、嵌入模型和知识库,实现文档向量化存储和智能检索;备选方案是采用AnythingLLM,同样支持本地模型部署和文档管理。两种方案均强调数据隐私保护,适合开发人员构建个性化知识管理系统。文章还提供了大模型学习资料获取方式,帮助读者系统掌握AI大模型技术。整体方案实现了离线环境下的知识检索和智能问答功能,解决了敏感数据上云的安全隐患。

2025-07-17 16:23:26 638

原创 Java程序员别只会写后端了!AI大模型才是未来!

Java程序员转型AI大模型工程师的优势与路径 摘要:随着AI大模型技术快速发展,Java程序员转向AI领域具有显著优势。转型优势包括:1)扎实的编程基础和系统架构能力;2)熟悉工程化部署和系统集成;3)Python学习曲线平缓。转型路径建议:1)掌握Python和机器学习基础;2)从HuggingFace等工具实践小项目入手;3)深入学习大模型技术栈;4)结合Java工程优势参与AI项目落地。Java程序员的系统思维和工程能力正是AI产业化最需要的素质,通过针对性学习完全可以在AI时代获得新的发展机遇。

2025-07-17 16:14:42 1681

原创 RagFlow 和 Dify 终极对比:一文看懂如何选择

RAG技术工具选型指南 RagFlow专注检索增强生成(RAG)全流程管理,适合企业级知识库、专业领域检索等场景,提供TB级数据处理和军工级安全部署。Dify作为通用AI开发平台,支持多模型接入和零代码编排,更适快速构建智能应用。 关键差异: 技术门槛:RagFlow需NLP基础,Dify可视化操作 数据处理:RagFlow擅长海量结构化数据,Dify侧重实时交互 部署安全:RagFlow提供私有化方案,Dify支持混合部署 选择建议:专业RAG需求选RagFlow,敏捷开发选Dify。决策时需考虑数据规模

2025-07-15 11:22:47 579

原创 导师说就这个大模型项目,随便拿去玩吧……

这是一个面向大模型技术学习者的知识分享项目,涵盖从预训练到落地的全流程内容。项目包含10大核心章节:预训练、部署推理、微调、量化、并行计算、Prompt工程等,用通俗易懂的方式讲解复杂技术。特别适合准备大模型相关面试的求职者,提供配套学习资源和完整PDF资料。项目内容已整理上传至CSDN,读者可免费获取配套资源包,快速掌握大模型技术要点,助力AI领域职业发展。

2025-07-15 11:19:20 373

原创 本地知识库+本地大模型,借助RAGFlow搭建医院医疗问诊助手,纯本地,超实用!

本文介绍了如何利用开源工具搭建本地医疗问诊助手系统。通过整合RAGFlow引擎、Ollama本地大模型和医疗数据集,实现了纯本地化的解决方案。系统采用Huggingface上的medical_QA数据集、shaw/dmeta-embedding-zh向量化模型和qwen2:7b大模型,支持多种文件解析。详细步骤包括:1)使用WSL安装Ubuntu系统;2)配置Docker环境;3)部署RAGFlow服务器;4)通过Ollama加载本地大模型;5)导入医疗数据集。该系统具有无需联网、数据安全、支持丰富文档格式

2025-07-14 14:01:23 827

原创 几乎是跪着看完AI教母李飞飞的巨作!如果你agent ai很差,一定要看!!

2025年或将成为AI Agent元年!斯坦福大学李飞飞团队联合微软专家发布的80页《AGENT AI》综述,系统梳理了多模态交互领域的最新突破。研究重点包括:基础模型在具身智能中的应用、多模态感知与环境嵌入技术、结合外部知识优化Agent行为预测等。文章展望了未来人类与虚拟Agent深度交互的场景,为构建沉浸式虚拟现实提供了技术路线。这份由14位专家共同撰写的综述,已成为理解AI Agent发展的重要参考文献。

2025-07-14 11:48:26 602

原创 知识库智能体终极解决方案!Ollama+BGE-M3对接Vllm+Dify+本地DeepSeek大模型详细操作

本文详细介绍了在Windows系统上部署Ollama大语言模型服务的完整流程。主要内容包括Ollama的下载安装、模型文件目录修改、模型选择与下载、端口号配置及Dify集成等关键步骤。文章特别提供了BGE-M3嵌入模型的测试方法,并解决了Dify集成时常见的端口配置问题。通过图文并茂的教程,帮助用户轻松实现本地大语言模型的部署与应用,为构建个性化AI智能体提供了完整解决方案。文末还附赠了大模型学习资源包,包含书籍、报告、视频等学习材料。

2025-07-09 11:53:45 757

原创 DeepSeek+Dify本地化部署教程,企业知识库3分钟上线!

说到知识库又不得不提一提大语言模型LLM(Lager Language Model)的一些痛点:1.大模型经过海量文本数据的训练后,能将这些文本数据以一种黑盒形式压缩在模型参数中,遇到知识更新又会涉及到二次训练,因此知识更新成为最大的痛点。

2025-07-09 11:36:07 646

原创 大模型神书《实战AI大模型》!知名教授尤洋首发新书深入浅出热门AI大模型,从零基础到精通,看这本就够了!赶紧收藏!!!

《实战AI大模型》深度解析当前AI大模型技术,涵盖Transformer、BERT、GPT等核心模型,并介绍Colossal-AI高效训练系统。作者尤洋教授作为AI领域专家,提供从理论到实践的全面指导,包括案例分析和视频教学。本书适合不同层次读者,获李开复、周鸿祎等业界领袖推荐。现可免费领取电子版,助力读者掌握AI前沿技术。

2025-06-30 22:24:03 723

原创 写给小白的大模型应用科普:AI Agent篇

AI Agent(智能体)是结合大语言模型(LLM)的自主任务执行系统,不仅能回答问题,还能主动完成复杂任务。它通过"大脑"(LLM)、"记忆"、"规划能力"和"工具使用"四个组件,实现理解需求、拆分任务、调用工具和执行操作的全流程。典型应用包括智能客服、编程助手、个人助理等场景。虽然当前面临任务规划错误、工具调用失误等可靠性挑战,但未来将向更自主、行业化、个性化的方向发展。AI Agent的进化标志着人工智能从"被动

2025-06-30 22:20:15 949

原创 【RAG实战】基于知识图谱增强RAG应用和构建RAG知识库(附教程)_基于rag、知识图谱的知识库系统

【摘要】 本文探讨了RAG(检索增强生成)技术在知识库与知识图谱中的实践应用。面对大模型存在的幻觉问题、时效性不足等挑战,RAG通过检索外部知识提升生成内容的准确性与专业性。文章系统梳理了RAG技术的发展脉络(朴素RAG、进阶RAG、模块化RAG),并指出知识图谱的结构化特性可有效增强大模型的解释推理能力。作为当前工程化最成熟的大模型解决方案,RAG技术为AI落地提供了知识更新、专业问答等场景的实践路径,实现了检索式与生成式模型的优势互补。

2025-06-27 10:45:00 864

原创 从零学习大模型:我的私人学习清单(书+网站+课),省下90%摸索时间!

本文针对AI初学者常见的学习困惑,提供一套系统化的大模型学习路径与资源清单。作者以非科班背景成功转型的经验,总结出四阶段成长路线:1)Python与机器学习基础;2)Transformer原理与LLM架构;3)API调用与模型微调;4)AI应用开发实战。推荐资源涵盖书籍、视频、开源项目及商业化解决方案,并特别整理包含学习路线图、100套落地案例、200本电子书等全套资料包(免费领取)。通过七阶段进阶体系,学习者可掌握从提示词工程到多模态开发的完整技能

2025-06-27 09:30:00 608

原创 一文彻底搞懂大模型 - RAG(检索、增强、生成)

RAG(检索增强生成)技术简介 RAG是一种融合信息检索与生成式AI的技术框架,通过从外部知识库检索相关数据,结合大型语言模型(LLM)生成更精准、实时的文本内容。其核心流程分为三步: 检索:从知识库中匹配与问题相关的信息片段; 增强:将检索结果作为上下文输入,优化LLM的提示词(Prompt); 生成:LLM结合增强后的Prompt输出最终回答。 应用与实现 RAG可解决LLM的"知识截止"和"幻觉"问题,适用于问答系统、内容生成等场景。典型实现步骤包括: 构建向量

2025-06-27 08:00:00 968

原创 2025最新大语言模型(LLM)入门学习路线图+资源分享_llm教程

Github项目上有一个大语言模型学习路线笔记,它全面涵盖了大语言模型的所需的基础知识学习,LLM前沿算法和架构,以及如何将大语言模型进行工程化实践。这份资料是初学者或有一定基础的开发/算法人员入门活深入大型语言模型学习的优秀参考。这份资料重点介绍了我们应该掌握哪些核心知识,并推荐了一系列优质的学习视频和博客,旨在帮助大家系统性地掌握大型语言模型的相关技术。

2025-06-26 07:24:54 730

原创 零基础,零成本,部署一个属于你的大模型_大模型怎么入门

看了那么多chatGPT的文章,作为一名不精通算法的开发,也对大模型心痒痒。但想要部署自己的大模型,且不说没有算法相关的经验了,光是大模型占用的算力资源,手头的个人电脑其实也很难独立部署。就算使用算法压缩后的大模型,部署在个人电脑上,还要忍受极端缓慢的计算速度以及与chatGPT相差甚远的模型效果。————————————————

2025-06-26 07:20:06 995

原创 万字长文详解如何构建自己的大模型(非常详细)零基础入门到精通,收藏这一篇就够了

本文介绍了大模型部署方法,重点推荐清华大学的ChatGLM3-6B作为高性能低成本的开源基座模型。文章详细讲解了环境安装、模型加载的4种方式(代码调用、网页版、命令行、工具调用),并提供了量化技术和CPU部署方案,使普通用户也能在个人电脑上运行大模型。最后强调通过有监督微调可以定制化模型,使其更好地适应特定应用场景。

2025-06-26 07:16:21 692

原创 大龄程序员想转行大模型,应该往哪个方向转?_cv大模型架构师

程序员转行到大模型开发领域,可以根据个人兴趣和职业规划选择不同的方向。以下是几个推荐的方向、推荐原因以及学习路线:

2025-06-24 19:47:38 967

原创 保姆级教程:本地部署多模态大模型,携手Open-WebUI与Dify打造智能对话新体验!_openwebui 联网搜索

本文介绍了如何通过Ollama和OpenWeb-UI在个人电脑上搭建本地多模态大模型,实现智能问答、图像分析等功能。文章详细说明了Ollama和OpenWeb-UI的特点与使用场景,并提供了MacOS系统的具体部署教程,包括Docker安装、Ollama配置以及OpenWeb-UI的搭建步骤。该方法支持跨平台使用(Windows、macOS、Linux),确保数据安全和隐私,还可结合Dify构建本地智能体,为用户提供高效便捷的大模型交互体验。

2025-06-24 19:45:44 729

原创 写给大模型新人的经验:刷到少走三年弯路!

今天这篇文章,我不打算讲那些泛泛而谈的大模型原理,我就站在一个“老转行人 + 老程序员 + 老训练营主理人”的角度,跟你聊聊:大模型怎么转?适合哪些人?哪些方向对新手友好?又有哪些坑你必须避开?文章有点长,但全是我这几年观察下来最真实的经验,如果你真的想搞懂大模型、入场不踩坑,建议认真读完,或先收藏慢慢看。

2025-06-23 15:17:14 812

原创 太强了!上海交大动手学大模型教程早已next level(附项目地址+课件)

上海交通大学推出免费开源课程《动手学大模型》,由张倬胜教授团队开发,涵盖大模型微调部署、API调用、安全技术等核心内容。课程特色包括:实践导向的编程教程、前沿技术覆盖、详细参考资料及持续更新机制。适合AI学习者快速掌握大模型应用,所有资料免费开放,可通过GitHub获取完整课件。该项目已获广泛关注,成为大模型入门的重要学习资源。

2025-06-23 14:13:29 380

原创 知识储备≠模型能力!DeepMind强化学习微调:大幅缩小「知行差距」

大语言模型(LLMs)在决策场景中常因贪婪性、频率偏差和知行差距表现欠佳。研究者提出强化学习微调(RLFT),通过自我生成的推理链(CoT)优化模型,提升决策能力。实验表明,RLFT可增加模型探索性,缩小知行差距,但探索策略仍有改进空间。

2025-06-22 10:04:36 545

原创 (中英双语)从零开始构建大模型:GitHub超44K Star的大模型教程(送PDF)_从零构建大模型 pdf

《从零构建大语言模型》:掌握AI核心技术的实战指南 随着AI大模型技术的飞速发展,理解底层原理成为开发者的核心竞争力。机器学习专家Sebastian Raschka的新作《Build a Large Language Model (From Scratch)》提供了从零实现GPT类模型的完整路径。该书通过PyTorch实战,详细解析Transformer架构的7大核心模块,包括: 模型初始化与tokenizer设计 数据处理流水线 Attention机制实现 文本生成策略 预训练工程优化 微调技术实践 安全

2025-06-22 09:52:53 1657

原创 一天吃透一条产业链:AI Agent(智能体)产业链全解

AI Agent产业链全解摘要(148字) AI Agent是具备自主决策能力的智能程序,其核心架构由"大脑"(大模型)和"三件套"(规划、记忆、工具)构成,能像人类一样分解任务、存储信息并调用外部工具。产业链上游依赖算力(芯片/云计算)、算法(Transformer架构)和数据(多模态处理)三大基础;中游涌现四类玩家:企业自动化平台、开发者工具、行业专用软件及智能终端设备。随着GPT-5等新一代模型推出,AI正从"问答"向"自主办事&q

2025-06-22 09:48:39 806

原创 AI不只大模型?AI Agent到底有多强?

AI Agent:下一代智能计算平台 摘要:AI Agent是当前科技领域的热门概念,被视为下一代计算平台。它以大语言模型(LLM)为核心,具备感知、规划、记忆、工具使用和行动等能力,能够自主完成复杂任务。与单纯的大模型相比,AI Agent更像一个"有手有脚"的智能体,不仅能提供方案,还能执行具体操作。目前已有ChatDev全自动软件开发、斯坦福AI小镇等成功案例。AI Agent通过感知环境-处理信息-决策执行-反馈优化的闭环流程,展现出强大的适应性和灵活性,有望彻底改变人机交互方式

2025-06-20 11:28:27 353

原创 李宏毅教授 | 2025最新AI Agent课程资料及几点感悟(96页PPT)

李宏毅教授2025年最新AI Agent课程探讨了智能代理的发展趋势与核心特征。课程指出:1)应注重目标导向而非步骤指导,将Agent视为自主伙伴而非工具;2)Agent的核心能力在于利用工具(包括简单代码文件等灵活形式),预示MCP和A2A可能成为未来的操作系统标准;3)规划能力是持续挑战,真正的智能在于动态生成新流程应对未知场景,而非预设固定工作流。课程资料包含96页PPT,延续了李教授以宝可梦等生动案例讲解复杂概念的一贯风格。完整课件可免费获取,为AI学习者提供了宝贵资源。

2025-06-20 11:26:18 644

原创 LangGraph实战教程:构建会思考、能记忆、可人工干预的多智能体AI系统

摘要: 检索增强生成(RAG)作为大语言模型(LLM)的务实应用方向,虽入门简单但落地挑战多。文中分析了四大失败原因: 分块策略与Top-k算法:固定分块和参数易导致信息相关度下降,需动态调优。 世界知识缺失:依赖有限数据源的RAG可能脱离常识(如《西游记》问答的荒谬答案)。 多跳问题:复杂逻辑需多轮检索(如社交关系推理),需结合Prompt工程或图数据库。 信息损失链:从分块到生成的每个环节均有损耗,可能弱于传统搜索引擎。 作者团队通过整合多页PPT内容、跨段落理解等优化提升了RAG效果,但仍强调LLM需

2025-06-19 16:20:10 559

原创 2025超详细的大模型学习路径|从入门到精通一篇讲透,别再迷茫了!照着学就对了!

本文介绍了大型语言模型(LLM)学习路线的基础知识。首先强调了数学基础的重要性,包括线性代数、微积分和概率统计。其次详细讲解了神经网络的核心概念,如结构设计、训练优化和过拟合处理。最后介绍了自然语言处理(NLP)领域的基础知识。文章还提供了丰富的学习资源推荐,如Python教程、机器学习课程和深度学习视频等,帮助读者系统性地掌握LLM相关知识体系。全文以基础知识为核心,循序渐进地为学习者构建完善的知识框架。

2025-06-19 16:05:13 1106

原创 RAG技术全解析:从基础原理到优化实战

RAG技术全解析:从基础到优化实战 RAG(检索增强生成)通过结合检索与生成技术,动态增强LLM的知识库,解决幻觉和时效性问题。流程分为: 构建向量存储:文档加载、分块、向量化存储 检索生成:相似度检索后结合上下文生成答案 优化关键点: 文档分块:需平衡语义完整性与token限制 相似度计算:余弦相似度易受高频词干扰,可结合BM25 重排序:用交叉编码器优化初步检索结果 GraphRAG:引入知识图谱实现多跳推理 评估需关注检索准确率与生成质量。本文还提供了LangGraph实现的Github代码示例。

2025-06-18 22:30:00 1056

原创 转行AI大模型,30岁程序员也能逆袭成“新贵”!

摘要: AI大模型的快速发展正深刻改变各行业,为30岁左右的程序员带来转型机遇。程序员在工程经验、编程能力和学习适应性上的优势使其天然适合转向AI领域。转型路径可从应用层切入,逐步掌握Prompt工程、RAG、Agent开发等核心技术,并通过实践项目积累经验。建议分阶段学习:了解概念→动手实践→系统学习→打造作品→求职转型。当前国内外大模型生态成熟,人才需求旺盛,程序员可借助现有技能快速过渡,将年龄转化为经验优势,抓住AI时代的新机遇。

2025-06-18 18:23:45 672

原创 10张图全面理解AI Agents、Agentic、RAG、MCP技术栈。

这篇分享全面解析了AI技术前沿趋势,包含六大核心模块:1. AI Agents详解其工作原理、工具框架(如LangChain/AutoGen)及实际应用场景;2. Agentic AI作为范式转变的系统架构指南;3. MCP/A2A/FC技术对比图解;4. RAG技术的重要性与实现工具;5. 六大AI模型(机器学习、生成式模型等)的简明解读;6. 2025 AI技术栈路线图,涵盖10个关键领域的学习路径。文末附赠大模型学习资料包,包含技术路线、实战案例与视频教程。

2025-06-16 17:19:56 776

原创 浙江大学强势出品!《大模型基础》教材已开源!附PDF文档

《大模型基础》是浙江大学团队推出的入门教材,系统讲解大语言模型核心技术,涵盖语言模型基础、架构演化、Prompt工程、参数微调、模型编辑和检索增强生成六大模块。全书以动物为章节主题,生动解析技术原理与应用场景,包括电商、营销、编程等领域的实践案例。配套640套行业报告、学习视频及完整开源教程,帮助读者快速掌握AI大模型开发技能,实现职业进阶。现提供免费PDF版本及全套学习资料,适合技术从业者与AI爱好者学习参考。

2025-06-16 17:13:32 676

原创 一文详解几种常见本地大模型个人知识库工具部署、微调及对比选型_anythingllm和webui哪个更好

本地大模型知识库工具盘点 知识库侧工具专注于文档处理与RAG应用,包括: AnythingLLM - 支持多格式文档的私有化ChatGPT方案,提供工作区隔离与多用户权限管理。 MaxKB - 开箱即用的企业级问答系统,支持多模型接入与第三方嵌入。 RAGFlow - 深度文档理解专家,具备表格/图片解析、可控文本切片及溯源能力,降低幻觉风险。 FastGPT - 可视化工作流编排工具,集成高效向量检索与多模型调用。 Dify - 低代码LLM应用开发平台,融合RAG引擎和Agent框架。 Open Web

2025-06-13 11:30:00 1061

原创 大模型常见面试题汇总(含答案),面试还得八股文,不背不行啊,非常详细收藏我这一篇就够了!_大模型面试题大全超详细解析

文章摘要: 本文汇总了大模型算法岗常见面试题及答案,涵盖基础与进阶知识。基础篇包括主流开源模型体系(如Transformer、Hugging Face)、模型架构(如GPT、BERT)、Tokenizer原理及激活函数等;进阶篇探讨输入长度限制、复读机问题及解决方案,并对比不同模型(如BERT与LLaMA)的适用场景。内容针对大模型技术岗位的面试需求,提供实用知识点,适合求职者快速掌握核心概念。(150字)

2025-06-13 11:00:00 949

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除