不再是梦!程序员转型AI的“逆袭秘籍”来了,从零基础到拿高薪,看这一篇就够了!

在当今科技领域,人工智能(AI)凭借技术的持续进步,已成为备受瞩目的热门话题。众多开发者正考虑从传统软件开发领域,例如Java,迈向人工智能的新天地。今天,让我们一同探讨Java开发者转向人工智能领域的可行性,包括转型带来的优势、薪资水平的对比,以及成功转型所需的知识体系和学习路径。

1、 Java开发者能否转型人工智能?

答案是肯定的。 Java开发者向人工智能领域的转型是切实可行的。得益于Java作为主流编程语言的广泛应用,其背后强大的生态系统和广泛的库资源为转型提供了坚实基础。值得注意的是,诸如Apache Mahout和Deeplearning4j等人工智能框架和库,正是依托Java构建而成的,这为Java开发者铺平了通往AI的道路。

转向AI,Java开发者拥有几大显著优势。首要的是,他们通常掌握扎实的编程基础和出色的逻辑思维能力,这对于深入理解并实现AI算法至关重要。其次,在大数据处理与系统集成领域的丰富经验,使得Java开发者在AI项目中能够大展身手,无论是构建高效的数据处理流程,还是整合多样化的系统组件,都能游刃有余。

2、Java与人工智能对比分析?

‌(1)岗位需求对比

人工智能岗位需求持续增长

  • 岗位多样性:

人工智能领域涵盖了广泛的岗位,如算法工程师、深度学习工程师、NLP算法工程师、视觉算法工程师以及图形算法工程师等。这些岗位不仅技术含量深厚,而且市场需求量大,相应地,它们提供的薪资待遇也颇为优厚。

img

  • 市场需求量大:

img

截至2023年8月,人工智能(AI)岗位的平均月薪已攀升至超过4.6万元人民币,然而,该领域的人才供需比仅为0.39,凸显出AI人才的极度稀缺。尤为值得关注的是,纯互联网行业成为了AI岗位新发布量的领头羊,占比高达20.78%。

img

AIGC(人工智能内容生成)人才需求也在持续增长,特别是在2023年4月,新发岗位量出现了近2倍的大幅增长。

Java开发岗位竞争压力增加

近年来,互联网行业因经济下行趋势而整体发展步伐放缓,这一背景下,Java开发相关岗位亦不可避免地受到波及。与此同时,人工智能技术的迅猛进步,特别是ChatGPT等工具的兴起,使得众多编程任务得以自动化完成,这对传统Java开发岗位构成了新的挑战。值得注意的是,尽管Java作为一种成熟稳定的编程语言,其市场人才供应相对新技术方向略显饱和,但企业对Java开发者的能力与经验要求却日益提升,导致Java岗位竞争愈发激烈,从业者面临的职业压力也随之增大。

(2)薪资水平对比

人工智能行业薪资

  • 薪酬报告:

作为全球战略性新兴产业的代表,人工智能领域对相关专业人才的需求在全球范围内持续攀升。依据智联招聘在2024年第二季度发布的《中国企业招聘薪酬报告》显示,人工智能行业在招聘薪资方面独占鳌头,平均月薪高达13594元,而薪酬中位数也达到了10501元。这一系列数据清晰地反映出人工智能领域对高端技术人才的强烈需求,以及市场对此类人才渴求度的不断上涨。

img

  • 典型岗位薪资

在人工智能领域内,诸如算法工程师、计算机视觉工程师以及自然语言处理专家等典型岗位,普遍享有较高的薪资水平。具体而言,算法工程师的月薪常常超过2万元,而计算机视觉工程师和自然语言处理专家的薪资也普遍不低于1.5万元。

img

img

img

img

Java开发薪资

与人工智能行业相比,Java开发岗位的薪资水平、薪资增长速度、增长幅度显得较为平稳。而人工智能行业,则因为近年来技术的迅猛发展,新技术的引入和应用激增,加上技能稀缺性,市场人才缺口大,推高了人工智能的薪资水平。另外,作为很多企业未来核心的竞争力,人工智能薪资提升空间也远比Java开发岗位大。

(3)发展前景对比

人工智能前景广阔

人工智能是未来技术发展的重要方向,2024年,人工智能行业继续处于发展的黄金时期。随着5G技术的普及、物联网的发展以及大数据的积累,AI在智慧城市、智能制造、智能医疗、金融科技等领域的应用日益广泛,对专业人才的需求激增。据报告,人工智能行业的职位供需比同比增长显著,显示出强劲的就业势头和薪资增长潜力

Java开发面临挑战

随着人工智能技术的发展,许多传统的Java开发任务可能会被自动化工具替代,这使得Java开发人员面临更大的职业挑战。为了保持竞争力,Java开发人员需要不断更新自己的技能,学习新的编程语言和技术,以适应不断变化的市场需求。

总体来看,人工智能行业的薪资水平和职业发展前景都优于Java开发。对于正在考虑职业发展路径的个人,尤其是那些面临职业瓶颈或希望拓展技能的Java开发人员,转型到人工智能领域是一个值得考虑的选择。即使是自身 Java 技术非常专业且工作稳定的人员,从长远来看,拓展学习人工智能技能栈,也能够为未来的职业发展创造更多机会。

3、转行大模型,如何学习大模型 AI ?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值