要理解大语言模型(LLM),首先要理解它的本质,无论预训练、微调还是在推理阶段,核心都是next token prediction,也就是以自回归的方式从左到右逐步生成文本。
什么是 token
token是指文本中的一个词或者子词,给定一句文本,送入语言模型前首先要做的是对原始文本进行tokenize,也就是把一个文本序列拆分为离散的token序洌
其中,tokenize是在无标签的语料上训练得到的一个token数量固定且唯一的分词器,这里的token数量就是大家常说的词表
英文中的 Token
- 在英文中,Token 通常是单词、子词或标点符号。一个单词可能对应一个 Token,也可能被拆分为多个 Token。例如,“unhappiness” 可能被拆分为 “un”、“happi” 和 “ness”。
- 一般来说,1 个 Token 对应 3 至 4 个字母,或者约 0.75 个单词。
中文中的 Token
- 在中文中,Token 通常是单个汉字或经过分词后的词语。例如,“人工智能” 可能被拆分为 “人工” 和 “智能”。
- 不同平台对 Token 的定义有所不同。例如,通义千问和千帆大模型中 1 Token 等于 1 个汉字,而腾讯混元大模型中 1 Token 约等于 1.8 个汉字
当我们对文本进行分词后,每个token可以对应一个embedding,这也就是语言模型中的embedding层,获得某个token的embedding就类似一个查表的过程
我们知道文本序列是有顺序的,而常见的语言模型都是基于注意力机制的transformer结构,无法自动考虑文本的前后顺序,因此需要自动加上位置编码,也就是每个位置有一个位置embedding 然后和对应位置的token embedding进行相加
在模型训练或推理阶段大家经常会听到上下文长度这个词,它指的是模型训练时接收的token训练的最大长度,如果在训练阶段只学习了一个较短长度的位置embedding,那模型在推理阶段就不能够适用于较长文本(因为它没见过长文本的位置编码)
语言模型的预训练
当我们有了token的embedding和位置embedding后,将它们送入一个decoder-only的transofrmer模型,它会在每个token的位置输出一个对应的embedding(可以理解为就像是做了个特征加工)
有了每个token的一个输出embedding后,我们就可以拿它来做 next token prediction了,其实就是当作一个分类问题来看待:
- 首先我们把输出embedding送入一个线性层,输出的维度是词表的大小,就是让预测这个token的下一个token属于词表的"哪一个"
- 为了将输出概率归一化,需要再进行一个softmax变换
- 训练时就是最大化这个概率使得它能够预测真实的下一个token
- 推理时就是从这个概率分布中采样下一个token
训练阶段: 因为有 **因果自注意力(Causal Self-Attention)**的存在,我们可以一次性对一整个句子每个token进行下一个token的预测,并计算所有位置token的loss
因果自注意力通过引入一个“掩码”(mask)来实现这一机制。具体来说:
- 在计算注意力权重时,模型会将当前时刻之后的所有位置的注意力权重设置为零。
- 这样,模型在预测下一个词时,只能基于已经生成的词(即前面的词)来进行预测。
推理阶段:以自回归的方式进行预测
![]() | ![]() |
---|---|
其中,在预测下一个token时,每次我们都有一个概率分布用于采样,根据不同场景选择采样策略会略有不同,比如有贪婪策略、核采样、Top-k采样等,另外经常会看到Temperature这个概念,它是用来控制生成的随机性的,温度系数越小越稳定。
代码实现
https://github.com/karpathy/nanoGPT/tree/master
对于各种基于Transformer的模型,它们都是由很多个Block堆起来的,每个Block主要有两个部分组成:
- Multi-headed Causal Self-Attention
- Feed-forward Neural Network
结构的示意图如下:
看图搭一下单个Block
class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) self.attn = CausalSelfAttention(config) self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) self.mlp = MLP(config) def forward(self, x): x_ = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x_)) return x
整个nano-GPT的结构
class GPT(nn.Module): def __init__(self, config): super().__init__() assert config.vocab_size is not None assert config.block_size is not None self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), drop = nn.Dropout(config.dropout), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = LayerNorm(config.n_embd, bias=config.bias), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # with weight tying when using torch.compile() some warnings get generated: # "UserWarning: functional_call was passed multiple values for tied weights. # This behavior is deprecated and will be an error in future versions" # not 100% sure what this is, so far seems to be harmless. TODO investigate self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying # init all weights self.apply(self._init_weights) # apply special scaled init to the residual projections, per GPT-2 paper for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight'): torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
最后一层用来分类的线性层的权重和token embedding层的权重共享。
训练和推理的forward
首先需要构建token embedding和位置embedding,把它们叠加起来后过一个dropout,然后就可以送入transformer的block中了。
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)# forward the GPT model itselftok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)x = self.transformer.drop(tok_emb + pos_emb)for block in self.transformer.h: x = block(x)x = self.transformer.ln_f(x)
接下来看推理阶段
- 根据当前输入序列进行一次前向传播
- 利用温度系数对输出概率分布进行调整
- 通过softmax进行归一化
- 从概率分布进行采样下一个token
- 拼接到当前句子并再进入下一轮循环
@torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ for _ in range(max_new_tokens): # if the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # forward the model to get the logits for the index in the sequence logits, _ = self(idx_cond) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) return idx
温度参数(Temperature)的作用
温度参数 temperature
是一个超参数,用于控制生成文本的随机性。它的作用是调整 logits 的分布,从而影响最终的概率分布。
具体来说:
-
temperature > 1
:增加随机性 -
当温度参数大于 1 时,会放大 logits 的值,使得 logits 的分布更加“平坦”。
-
这意味着在 softmax 转换为概率分布后,各个 token 的概率会更加接近,从而增加生成结果的随机性。
-
例如,假设原始 logits 是
[10, 20, 30]
,除以温度参数 2 后变为[5, 10, 15]
,经过 softmax 后,概率分布会更加均匀。 -
temperature < 1
:减少随机性 -
当温度参数小于 1 时,会缩小 logits 的值,使得 logits 的分布更加“尖锐”。
-
这意味着在 softmax 转换为概率分布后,高概率的 token 会更加突出,而低概率的 token 的概率会进一步降低,从而减少生成结果的随机性。
-
例如,假设原始 logits 是
[10, 20, 30]
,除以温度参数 0.5 后变为[20, 40, 60]
,经过 softmax 后,概率分布会更加集中在高概率的 token 上。 -
temperature = 1
:保持原始分布 -
当温度参数等于 1 时,logits 不变,模型的输出概率分布保持原始的预测结果。
为什么要调整温度参数?
-
增加随机性(
temperature > 1
): -
有助于生成更多样化的文本,避免模型总是生成相同的、高概率的 token。
-
适用于需要创造性或多样性的场景,例如诗歌生成、故事创作等。
-
减少随机性(
temperature < 1
): -
有助于生成更稳定、更符合预期的文本,减少生成的噪声。
-
适用于需要高准确性的场景,例如机器翻译、问答系统等。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发