用DeepSeek+扣子智能体,从0到1搭建对标账号监控智能体(喂饭级教程)

如果你是短视频小白,正在做短视频运营,一定遇到过这样的问题。

“对标账号今天又发了什么视频?”

“为什么他们的视频互动这么高?”

每天盯着对标账号,手动记录他们的数据,这太折磨人了。

但如果不这样做,又担心错过重要信息,落后一步。

今天,我要教你一个省时省力的方法,利用对标账号监控智能体,让对标账号监控变得简单又高效。

只需要简单设置,就能自动追踪对手的一举一动,再也不用手忙脚乱地采集数据。

1.什么是对标账号监控?

对标账号监控是一种竞品分析方法,主要用于跟踪和分析对标账号在短视频平台上的内容表现。

具体来说,它包括以下几个方面:

  • • 内容采集:实时采集竞争对手发布的内容、发布频率和内容主题
  • • 数据分析:收集并分析竞争对手内容的互动数据,如点赞、评论、转发等指标
  • • 趋势洞察:发现竞争对手内容中的热门主题

通过对标账号监控,我们能及时掌握行业动态和竞争对手动向,发掘新的选题机会,从而优化内容策略和运营方向。

2.该阶段的痛点问题

在进行对标账号监控时,短视频小白会可能存在以下痛点问题:

  • • 花钱买工具:动不动就要花好几千买数据采集工具,太贵了
  • • 编程门槛高:想自己写程序抓数据?除非你是代码高手,不然真的搞不定
  • • 手动收集太耗时:一个一个手动复制粘贴,忙得头都大了,还容易出错
  • • 信息总是慢半拍:等你收集完数据,重要信息早就过期了,追不上竞争对手的节奏

但是,今天通过使用deepseek+coze,实现对标账号监控智能体,就能能轻松解决这个问题。

只需输入目标用户的视频链接,就能自动批量获取该用户的所有视频内容,轻松完成对标账号的采集工作。

无需任何技术基础,也不用花一分钱购买工具,就能轻松解决竞品分析中最耗时的数据采集环节。

是不是听起来很棒?效果如下图,接下来,我就来告诉你具体该怎么操作。

image.png

3.智能体的整体搭建流程

为了让对标账号监控智能体顺利运行,我们需要先梳理整个搭建流程。

搭建流程主要分为两个步骤:创建工作流、创建智能体。

3.1 创建工作流

将场景流程转化为可自动化运行的步骤化模块。

  1. \1. 根据短视频链接,获取用户的基础信息
  2. \2. 根据用户ID,批量获取视频列表
  3. \3. 筛选出对标账号每天发布的视频
  4. \4. 将数据添加到飞书表格中

3.2 创建智能体

  1. \1. 新建智能体:在Coze平台创建一个新的智能体
  2. \2. 设置人设与逻辑:配置对标账号监控的智能体的特征、回复风格和决策逻辑
  3. \3. 绑定工作流:将工作流与智能体关联,赋予执行具体任务的能力
  4. \4. 设置触发器:定义智能体的启动条件和触发规则,让它能定时执行工作流,采集对标账号的视频。
  5. \5. 测试并发布:全面的功能测试,确认正常后将智能体正式发布到生产环境

4.创建工作流

登录Coze官网,在“资源库-工作流”里新建一个空白工作流,取“fetch_douyin_user_videos_daily”。

4.1 根据短视频链接,获取用户的基础信息

我们将使用【视频搜索】插件的douyin_data功能。通过这个功能,我们可以获取用户的ID和昵称:

image.png

  • • 输入:

    • • douyin_url:短视频链接
    • • api_token:点击“感叹号”,通过网站可以获取。

image.png

4.2 根据用户ID,批量获取视频列表

同样,我们继续使用【视频搜索】插件,使用其中的功能get_user_video_list。

image.png

使用这个功能可以获取用户的最新短视频:

  • • 输入:

    • • api_token:点击"感叹号"图标,即可获取网站授权码
    • • sec_uid:在"获取对标账号视频信息"节点的输出变量中,选择用户ID(sec_uid)
    • • count:设置需要获取的短视频数量,建议设为5个

image.png

image.png

  • • 输出:用户的抖音视频列表

4.3 批量获取视频详细信息

这个环节会使用批处理节点,批处理体内部会执行两个节点:

image.png

1.单个获取视频详情

通过“视频搜索”插件的“douyin_data”工具,单个获取视频详情。

  • • 输入:

    • • douyin_url:从"批量获取视频详细信息"的输出变量中选择share_url

image.png

2.将视频详情整合进视频列表

image.png

  • • 输入:

    • • aweme_detail:从"获取单个视频详情"的输出变量中,选择aweme_detail
    • • aweme:从"批量获取视频详细信息"的输出变量中,选择aweme

image.png

image.png

  • • 通过python代码,将视频详情整合进视频列表中,方便后续进一步处理。代码如下:
async def main(args: Args) -> Output:
    params = args.params
    aweme_detail = params.get("aweme_detail", {})
    aweme = params.get("aweme", {})
    aweme["aweme_detail"] = aweme_detail

    ret: Output = {
        "aweme": aweme
    }
    return ret

4.4 通过代码,筛选出对标账号昨天发布的视频

在这一步,我们通过代码,筛选出对标账号昨天发布的视频:

image.png

下面是处理数据的Python代码:

import time
import datetime

asyncdefmain(args: Args) -> Output:
    # 1. 先安全地获取 params
    params = getattr(args, "params", {})  # 如果 args 或 params 不存在,就给空字典
    ifnotisinstance(params, dict):
        return []  # 如果 params 不是字典,直接返回空列表

    # 2. 安全地获取 aweme_list
    aweme_list = params.get("aweme_list", [])
    ifnotisinstance(aweme_list, list):
        return []  # 如果 aweme_list 不是列表,也直接返回空列表

    # 计算昨天 00:00:00 ~ 今天 00:00:00 的时间戳区间(单位:秒)
    today = datetime.date.today()
    yesterday = today - datetime.timedelta(days=1)
    yesterday_start_ts = int(time.mktime(yesterday.timetuple()))  # 昨天 00:00:00
    today_start_ts = int(time.mktime(today.timetuple()))          # 今天 00:00:00

    result = []

    # 3. 遍历 aweme_list,过滤出发布日期是昨天的 aweme
    for aweme in aweme_list:
        ifnotisinstance(aweme, dict):
            continue

        aweme_detail = aweme.get("aweme_detail", {})
        ifnotisinstance(aweme_detail, dict):
            continue

        # raw_create_time 应该是秒级时间戳
        raw_create_time = aweme_detail.get("create_time", 0)
        ifisinstance(raw_create_time, int):
            if yesterday_start_ts <= raw_create_time < today_start_ts:
                result.append(aweme)

    return result

4.5 选择器判断列表是否为空

image.png

4.6 通过代码将信息整理为飞书表格可以使用的数据

在这一步,我们通过代码,将信息整理为飞书表格可以使用的数据。

image.png

下面是处理数据的Python代码:

async defmain(args: Args) -> Output:
    """
    处理传入的 args.params.aweme_list 列表,提取每条视频的关键信息并返回。
    """
    # 1. 先安全地获取 params
    params = getattr(args, "params", {})  # 如果 args 或 params 不存在,就给空字典
    ifnotisinstance(params, dict):
        return []  # 如果 params 不是字典,直接返回空列表

    # 2. 安全地获取 aweme_list
    aweme_list = params.get("aweme_list", [])
    ifnotisinstance(aweme_list, list):
        return []  # 如果 aweme_list 不是列表,也直接返回空列表

    result = []

    # 3. 遍历 aweme_list,依次处理
    for aweme in aweme_list:
        # 如果当前 aweme 非字典类型,直接跳过
        ifnotisinstance(aweme, dict):
            continue

        # 4. 安全获取 share_info 和 statistics
        share_info = aweme.get("share_info", {}) ifisinstance(aweme.get("share_info"), dict) else {}
        statistics = aweme.get("statistics", {}) ifisinstance(aweme.get("statistics"), dict) else {}

        # 5. 提取各字段信息,并在取值时加默认值
        video_id = statistics.get("aweme_id", "")
        title = share_info.get("share_title", "")
        link = share_info.get("share_url", "")
        digg_count = statistics.get("digg_count", 0)
        comment_count = statistics.get("comment_count", 0)
        collect_count = statistics.get("collect_count", 0)
        share_count = statistics.get("share_count", 0)

        # 6. 获取 aweme_detail 并判空
        aweme_detail = aweme.get("aweme_detail", {}) ifisinstance(aweme.get("aweme_detail"), dict) else {}
        #   获取作者信息
        author_info = aweme_detail.get("author", {}) ifisinstance(aweme_detail.get("author"), dict) else {}
        author_name = author_info.get("nickname", "")
        signature = author_info.get("signature", "")
        sec_uid = author_info.get("sec_uid", "")

        # 7. 获取时间和时长,这里可以进一步做类型检查,防止计算时报错
        raw_create_time = aweme_detail.get("create_time", 0)
        create_time_ms = raw_create_time * 1000ifisinstance(raw_create_time, int) else0

        raw_duration = aweme_detail.get("duration", 0)
        duration_sec = raw_duration / 1000ifisinstance(raw_duration, (int, float)) else0

        # 8. 组装返回数据
        item_dict = {
            "fields": {
                "视频ID": video_id,
                "标题": title.strip(),
                "链接": {
                    "text": "查看视频",
                    "link": link.strip(),
                },
                "点赞数": digg_count,
                "评论数": comment_count,
                "收藏数": collect_count,
                "分享数": share_count,
                "作者": author_name,
                "用户简介": signature,
                "用户ID": sec_uid,
                "发布日期": create_time_ms,
                "时长": duration_sec
            }
        }
        result.append(item_dict)

    return result

4.7 通过代码将信息整理为飞书表格可以使用的数据

最后,我们将数据添加到飞书多维表格。

1.我们需要创建一个多维表格,设置好表头字段,如下图所示。

image.png

表头字段包括视频的所有关键信息:视频ID、标题、链接、点赞数、评论数、收藏数、分享数和作者、用户简介、用户ID、发布日期、时长。

2.飞书表格节点填写正确的输入参数

  • • 输入:

    • • app_token:多维表格的唯一标识符,支持输入文档 url。
    • • table_id:多维表格数据表的唯一标识符
    • • records:从“将信息整理为飞书表格可以使用的数据”的输出变量中,选择records

image.png

4.8 结束节点

image.png

5.创建智能体

5.1 新建智能体

在Coze平台创建一个新的智能体,命名“对标账号监控智能体”。

image.png

5.2 设置人设与逻辑

配置对标账号监控的智能体的特征、回复风格和决策逻辑。

# 角色
你是一个专业的对标账号监控智能体,能够熟练调用`fetch_douyin_user_videos_daily`工作流,为用户获取对标账号的最新视频列表。

## 技能
### 技能 1: 获取对标账号的最新视频列表
1. 当用户提出监控某个对标账号的需求时,使用`fetch_douyin_user_videos_daily`工作流,获取对标账号的最新视频列表;

## 限制:
暂无

5.3 绑定工作流

把之前的“fetch_douyin_user_videos_daily”工作流加进来,让智能体在合适的时机自动调用它。

image.png

5.4 设置触发器

添加触发器,让智能体能定时执行工作流,采集对标账号的视频。

image.png

定义智能体的启动条件和触发规则:名称、触发类型、触发时间。

任务执行选择机器人提示,输入对标账号的视频链接。

image.png

5.5 测试并发布

全面的功能测试,确认正常后将智能体正式发布到生产环境。

image.png

6.总结

通过本文,我们学习了如何构建一个对标账号监控智能体,它可以帮助我们自动收集和分析竞争对手的短视频数据。让我们回顾一下关键要点。

对标账号监控帮助我们了解竞争对手动向,及时调整自己的内容策略。

从工作流设计到代码实现,再到飞书表格对接,实现了全流程自动化。

不需要花钱买昂贵的监控工具,也不需要复杂的编程知识,就能实现自动化监控

有了这个智能体,我们可以省去大量手动收集数据的时间,把精力更多地放在内容创作和运营策略的制定上。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
<think>我们参考了用户提供的引用资料,特别是引用[2]中提到的Coze平台和DeepSeek大模型的使用流程。用户的问题是如何使用CozeDeepSeek搭建并测试AI智能体的工作流。根据引用资料,我们可以总结出以下步骤: 1. 在Coze平台上创建智能体项目。 2. 选择DeepSeek-R1作为大模型。 3. 编写提示词(Prompt)来定义智能体的行为。 4. 配置工作流(如果需要处理复杂任务)。 5. 测试和发布智能体。 具体步骤: ### 1. 创建Coze项目 首先,访问Coze平台(coze.cn)并登录。创建一个新的智能体项目。 ### 2. 选择模型 在智能体设置中,选择模型为DeepSeek-R1(或根据需求选择其他模型)。引用[3]中提到了使用DeepSeek-R1模型,并在系统提示词中填写具体的任务要求。 ### 3. 编写提示词 在智能体的系统提示词(Prompt)区域,编写清晰的指令来定义智能体的行为。引用[4]强调提示词的重要性,它需要明确告诉智能体如何工作,调用什么工具,使用什么语气等。例如: ``` 你是一个数码3C销售助手,负责回答用户关于数码产品的问题。请根据用户的问题,调用相应的工具(如产品查询工具)来获取信息,并以专业且友好的语气回答用户。 ``` ### 4. 配置工作流(可选) 如果任务需要多个步骤,可以配置工作流。工作流由多个节点组成,每个节点可以是一个工具调用、条件判断或数据处理步骤。引用[4]提到可以在提示词中使用{}来指定工作流,使用""来指定变量。例如: ``` {工作流名称} "参数1" "参数2" ``` ### 5. 测试智能体Coze平台提供的测试窗口中,输入问题测试智能体的响应。观察是否按照预期执行工作流和调用工具。 ### 6. 发布智能体 测试通过后,可以将智能体发布到需要的平台(如微信、飞书等)或通过API集成到业务系统中。 §§相关问题§§ 1. 如何优化Coze智能体的提示词以提高准确性? 2. Coze平台支持哪些大模型? 3. 在Coze中如何调试工作流?</think>### 如何使用CozeDeepSeek搭建并测试AI智能体工作流 以下是基于引用资料的详细搭建流程: #### 一、环境准备 1. **访问平台** - DeepSeek入口:[DeepSeek | 深度求索](https://www.deepseek.com) - Coze平台:[扣子(Coze)](https://www.coze.cn) [^1][^2] 2. **账号注册** 使用相同账号登录两个平台,确保无缝衔接。 --- #### 二、搭建智能体工作流 1. **创建Coze智能体** - 在Coze控制台点击「创建Bot」 - 命名智能体(如"数码3C销售助手") [^4] 2. **配置核心参数** ```markdown | 配置项 | 说明 | |-------------|----------------------------------------------------------------------| | 模型选择 | DeepSeek-R1(必选)[^3] | | 人设描述 | 明确角色定位(如"专业数码顾问") | | 工作流定义 | 用`{}`声明工作流名称,`""`定义变量(如`{产品查询} "手机型号"`)[^4] | ``` 3. **编写系统提示词(关键步骤)** 使用DeepSeek生成高质量提示词: ```python # DeepSeek输入示例 请生成智能体提示词,要求: - 角色:数码3C销售助手 - 功能:产品推荐、参数对比、促销通知 - 工作流:{产品查询}、{库存检查} - 语气:专业且友好 ``` 将DeepSeek生成的提示词粘贴到Coze的「系统提示词」区域[^1][^3]。 4. **配置插件/工作流** - 在Coze的「插件」模块添加: - 数据库连接器(查询产品库) - API工具(调用库存系统) - 使用可视化编排工具关联工作流节点[^2][^4] --- #### 三、测试与优化 1. **沙盒测试** - 在Coze控制台打开「测试面板」 - 输入测试用例: ``` 用户:iPhone 15的续航比三星S24好吗? 预期行为:调用{参数对比}工作流,返回表格数据 ``` 2. **调试技巧** - **问题定位**:检查工作流节点执行日志 - **提示词优化**:若返回结果不准确,返回DeepSeek迭代提示词 - **变量验证**:确保`""`定义的变量能被正确解析[^4] 3. **发布验证** 通过Coze智能体发布到: - 飞书/微信群 - Web API(Postman测试) [^2] --- #### 四、典型问题解决方案 | 问题现象 | 解决方法 | |------------------------|-----------------------------| | 工作流未触发 | 检查`{}`声明是否在提示词首行 | | 变量解析失败 | 确认`""`包裹的变量名无空格 | | 插件返回超时 | 在Coze中调整API超时阈值 | | 回答偏离预期 | 用DeepSeek强化角色约束描述 | > **关键提示**:智能体性能的70%取决于提示词质量,务必通过DeepSeek反复优化系统提示词[^1][^4]。测试阶段建议先用简单用例验证核心工作流,再扩展复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值