文章系统分析大模型处理表格的挑战与方法,指出三大痛点:任务单一、输入复杂和表示不统一。介绍四种表格表示法及五大处理任务:表问答、表到文本、事实核查、自然语言转SQL和排行榜构建。提出三大发现:缺乏复杂推理基准测试,长表和多表构成挑战,以及格式表示需要统一规范,为未来研究提供方向。
- 表格让大模型头疼?
文本是线性的,而表格是二维、结构多变、目的多样的——从严谨的数据库到多层嵌套的 Excel,再到 Wikipedia 的 Infobox。
把 LLM 处理表格的“痛苦”总结为三点:
痛点 | 概况 |
---|---|
任务单一 | 90% 的 Benchmark 都在考「检索+简单数学」,真正需要推理的很少 |
输入复杂就崩 | 长表、多表、层级表、跨文档表,人类 80+ 分,SOTA 模型 50 分不到 |
表示不统一 | 同一张表换个 JSON / HTML / Markdown,性能就能掉 5 个点 |
左侧用Text-To-Sql可解决,相比之下,右侧展示的是需要高级推理或涉及复杂输入的任务。
大模型表格处理任务的工作流
- 先把“表”说清楚:四种输入表示法
把 LLM 能“吃进”的表格表示分成 4 大类(对应 Figure 4):
表示方式 | 优点 | 缺点 | 典型 Benchmark |
---|---|---|---|
Serialization 序列化 | 直接用文本,最简单 | 结构信息易丢失 | WTQ, TabFact |
Schema 只给表头+列类型 | 省 token | 细节全丢 | Spider, SEDE |
Image 表格截图 | 保留完整视觉结构 | 受分辨率限制 | VISTABNet |
Table Encoder 专用编码器 | 结构感知最强 | 需要额外预训练 | TableGPT2, TAPAS |
实验发现:同样一道题,把 Markdown 换成 LaTeX,EM 分数最多差 20%
给了三种序列化示例:
- 5大人任务全景:不止Text-to-SQL
整理了 3 大经典任务 + 2 个新兴方向,并给出所有 Benchmark 一览(Table 1~4):
任务 | 输入 | 输出 | 热门数据集 |
---|---|---|---|
Table QA 表问答 | 表(+文本)+问题 | 答案单元格 / 数字 / 自由文本 | WTQ, HiTab, MULTIHIERTT |
Table-to-Text 表到文本 | 表(+高亮区域) | 一段描述或摘要 | ToTTo, LogicNLG, QTSUMM |
Fact Verification 表事实核查 | 表+声明 | Supported / Refuted / NEI | TabFact, FEVEROUS |
Text-to-SQL 自然语言转 SQL | 问题+数据库 | SQL 查询 | Spider, BIRD, Spider2 |
Leaderboard Construction 排行榜自动构建 | 论文表格 | (任务, 数据集, 指标, 分数) 四元组 | AxCell, TeLin |
- 三大发现:新研究机会?
4.1 任务复杂度
- 现有 Benchmark 大多是“把 SQL 翻译成自然语言”再让模型反推;
- 真正的诊断、预测、洞察类问题(图 3)几乎空白;
- Spider2 首次引入意图级问题:用户说“给我一份每日关键销售报告”,模型得自己猜要查哪些字段。
4.2 输入复杂度:长表、多表、层级表 = 模型噩梦
- MULTIHIERTT:人 83% vs 模型 <50%;
- HiTab:层级多维表,模型同样翻车;
- 科学论文中的消融表 + 长文本,是未来绝佳试验田。
4.3 表示统一:换个格式就掉点
- 同一任务里,JSON ↔ Markdown ↔ LaTeX 之间没有统一规范;
- 未来可以搞“格式互译”任务,让模型见多识广。
https://arxiv.org/pdf/2508.00217
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型实战项目&项目源码👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
为什么分享这些资料?
只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈