01.DeepSeek-R1 拿下网页编程第一,赶超Claude Opus 4
虽然大模型公共基准测试平台 LMArena 近期陷入争议,但还是有一定的参考价值。
我们就看看,也别纠结太多了。
根据 LMArena 最新的性能排行榜,DeepSeek-R1-0528 表现出色。
具体地,
-
在 WebDev Arena 平台上,DeepSeek-R1-0528 拿下网页编程第一,与 Gemini-2.5-Pro、Claude Opus 4 并列第一,分数上小胜 Claude Opus 4。
-
在文本基准测试(Text)中,DeepSeek-R1-0528 整体排名第 6,在开放模型中排名第一。
-
从细分类别来看,DeepSeek-R1-0528 在编程(Coding)方面排名第 2,在复杂提示词处理(Hard Prompt)方面排名第 4,在数学(Math)类别中排名第 5,在创意性写作(Creative Writing)方面排名第 6,在指令遵循(Intruction Fellowing)方面排名第 9,在更长查询(Longer Query)方面排名第 8,在多轮(Multi-Turn)方面排名第 7。
不过 LMArena 上表现出的强大性能,并不代表现实世界的表现依旧优秀。
DeepSeek-R1-0528 作为开源模型,技术上能与最好的闭源模型 Claude 媲美,但能否达到同样的用户体验,还需更多日常工作流程的实际验证。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
02.月之暗面放王炸!Kimi-Dev-72B 超新版 DeepSeek-R1
值得一提的是,月之暗面推出了针对软件工程任务的全新开源代码大模型 Kimi-Dev-72B, 在 SWE-bench Verified 上以 60.4% 的成绩取得开源 SOTA,超越了刚发布不久、参数量达 671B 的新版 DeepSeek-R1-0528。
图:SWE-bench Verified 基准上,Kimi-Dev-72B 与其他开源模型的性能比较
图:SWE-bench Verified 基准上,Kimi-Dev-72B 与闭源模型的性能比较
目前,Kimi-Dev-72B 已在 Hugging Face 和 GitHub 上提供下载和部署,包括模型权重、源代码等。
03.MiniMax 开源推理模型 M1,百万上下文超 DeepSeek-R1,性能与效率双杀
最近几个月,国产大模型的内卷激烈程度可以用“神仙打架”来形容。
同一天,国内大模型厂商扎堆发起了新模型。
6月17日,大模型独角兽 MiniMax 上线其首个推理模型 MiniMax-M1,称是全球首个开源权重的大规模混合注意力推理模型。
这也是「MiniMax Week」系列发布活动的首个对外发布。
该模型支持全球最长的上下文窗口,包括 100 万 tokens 输入(和Gemini 2.5 Pro一样,是 DeepSeek-R1 的8倍)、8 万 tokens 输出。
目前,MiniMax-M1 提供两个版本,分别设定 40K 与 80K 的思维预算(thinking budget),其中 40K 版本为中间训练阶段的成果。
-
Hugging Face:https://huggingface.co/collections/MiniMaxAI/minimax-m1-68502ad9634ec0eeac8cf094
-
GitHub 地址:https://github.com/MiniMax-AI/MiniMax-M1
-
技术报告:https://github.com/MiniMax-AI/MiniMax-M1/blob/main/MiniMax_M1_tech_report.pdf
-
体验地址:https://chat.minimax.io/
在推理效率、计算成本和复杂任务能力上,MiniMax-M1 展现出与 DeepSeek R1、Qwen3-235B 等模型不同的技术路径与性能表现。
得益于其高效的 Lightning Attention 机制,在生成长度为 10 万 tokens 的场景下,MiniMax-M1 的计算量(FLOPs)仅为 DeepSeek R1 的 25%,在长文本处理任务中具备显著优势。
在训练策略方面,MiniMax-M1 采用大规模强化学习(RL)方式,在数学推理、沙盒环境下的软件工程等多样任务中进行了全面优化。
MiniMax 还提出了名为 CISPO 的创新型强化学习算法。
在标准基准测试上的实验表明,MiniMax-M1 在性能上超越了其他强大的开源权重模型,如原始的 DeepSeek-R1 和 Qwen3-235B,尤其在复杂的软件工程、工具使用和长上下文任务上表现突出。
图:对领先的商业模型与开源模型在竞赛级数学、编程、软件工程、智能体工具使用以及长上下文理解等任务中的基准性能进行对比评估。其中,MiniMax-M1 结果使用其 MiniMax-M1-80k 模型。
04.AI大模型激烈混战!生成式AI全球激战
2025 AI 上半年的竞争真的太激烈了!
总体来看,OpenAI 遥遥领先;谷歌反超或成为最大的赢家;Meta 处于落后地位;Grok 3.5 杳无音讯。
根据 SimilarWeb 的5月统计,全球顶尖GenAI应用,每位活跃用户的日均使用时长中(基于安卓平台,过去28天的数据),ChatGPT、DeepSeek最高,而谷歌 Gemini 仅有 17 秒。
在 SimilarWeb 月初刚刚更新的「AI Global」报告中,可以看到不同领域的GenAI应用趋势:
-
开发与编码一直处于增长阶段,尤其是3、4月份涨超100%,一定程度上与爆火「氛围编程」概念有关。
-
通用GenAI 在3、4月也有一个流量高峰。
-
写作与内容、教育科技AI、顾客支持与体验、旅游等相关GenAI网站呈下行趋势。
报告地址:https://www.similarweb.com/corp/wp-content/uploads/2025/06/attachment-Global-AI-Tracker.pdf
生成式人工智能(AIGC)更以“内容创造者”的角色掀起新一轮生产力革命。无论是职场人用ChatGPT撰写周报、设计师借Midjourney生成海报,还是自媒体从业者靠Stable Diffusion快速制图,AIGC技术正以“零门槛”方式渗透进普通人的生活。
然而,AIGC的意义远不止于工具便利。放眼全球,AIGC 技术已上升为国家战略竞争的重要领域。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】